Advanced Calculus

Homework 6

Due on November 5, 2018

Problem 1 [3 points]

Evaluate the following limits, e.g., by using L'Hospital's rule.
(a)

$$
\lim _{x \rightarrow 1} \frac{\ln (x)}{x-1}
$$

(b)

$$
\lim _{x \rightarrow \infty}\left(1-\frac{a}{x}+\frac{b}{x^{2}}\right)^{x} \quad \text { for any } a, b \in \mathbb{R}
$$

(c)

$$
\lim _{x \rightarrow 0} \frac{\tan (x)-x}{\sin (x)-x}
$$

Problem 2 [6 points]

Find the Taylor series around $x=0$ (i.e., the Maclaurin series) of the following functions for $0<x<1$. Show that the functions are actually equal to their infinite power series by showing that the remainder term $R_{n}(x)$ of the Taylor expansion vanishes in the limit $n \rightarrow \infty$.
(a)

$$
f_{1}(x)=\ln (1+x),
$$

(b)

$$
f_{2}(x)=(1+x)^{a} \quad \text { for any fixed } a \in \mathbb{R} .
$$

Problem 3 [3 points]

Find all minima, maxima and points of inflection of $f(x)=\frac{x}{1+x^{2}}$. Where is the function convex, where is it concave? Based on your results, sketch the graphs of f, f^{\prime} and $f^{\prime \prime}$.

Problem 4 [4 points]

Let $p(x)$ be a non-constant polynomial of degree less than m with $p(0) \neq 0$. Now consider the function $f(x)=x^{m}-p(x)$. We would like to approximate the solutions to $f(x)=0$. Instead of Newton's method, consider the iteration scheme

$$
x_{n+1}=\left[p\left(x_{n}\right)\right]^{1 / m} .
$$

(a) Show that if this scheme converges, then the convergence will in general only be of first order.
(b) Consider $m=3$ and $p(x)=a x^{2}+b x+c$. Give an example of non-zero coefficients a, b, c such that for such a $p(x)$ the convergence is actually second order.

Problem 5 [4 points]

We briefly mentioned convex functions in class. This concept can be defined also for functions which are not twice differentiable. We say that a function f is convex in an interval $[a, b]$ if for all $\lambda \in[0,1]$ and for all $x_{1}, x_{2} \in[a, b]$

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) .
$$

(a) First, try to understand what this definition means for a convex function f. Draw some function, fix x_{1} and x_{2}, and draw the line $\lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)$ that results from considering all possible $\lambda \in[0,1]$.
(b) Then, consider a convex function f, some points x_{1}, \ldots, x_{n}, and some positive $\lambda_{1}, \ldots, \lambda_{n}$ with $\sum_{k=1}^{n} \lambda_{k}=1$. Prove that

$$
f\left(\sum_{k=1}^{n} \lambda_{k} x_{k}\right) \leq \sum_{k=1}^{n} \lambda_{k} f\left(x_{k}\right) .
$$

This is called Jensen's inequality. (You might see this again next year in your probability class.)

