Advanced Calculus

Homework 7

Due on November 12, 2018

Problem 1 [6 points]

Let $f:[1, \infty) \rightarrow[0, \infty)$ be nonincreasing (i.e., for $x \leq y$ we have $f(x) \geq f(y)$).
(a) Show that

$$
\sum_{k=2}^{n} f(k) \leq \int_{1}^{n} f(x) d x \leq \sum_{k=1}^{n} f(k) .
$$

Here you can use the fact that nonincreasing functions are integrable.
(b) Show that $\sum_{k=1}^{n} \frac{1}{k}$ diverges logarithmically for large n. (Note: The constant $\gamma=$ $\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} \frac{1}{k}-\ln (n)\right)$ is called Euler-Mascheroni constant.)
(c) Show that $\sum_{k=1}^{\infty} \frac{1}{k^{a}}$ converges for all $a>1$.
(d) Does $\sum_{k=2}^{\infty} \frac{1}{k \ln (k)}$ converge or diverge? What about $\sum_{k=2}^{\infty} \frac{1}{k(\ln (k))^{b}}$ for $b>1$? (Hint: substitution.)

Problem 2 [6 points]

Compute the integrals
(a)

$$
\int \frac{\cos (\ln (x))}{x} d x \text { for } x>0,
$$

(b)

$$
\int x^{2} \sin (x) d x
$$

(c)

$$
\int \frac{1}{x^{2}+2 x+6} d x,
$$

(d)

$$
\int \frac{\sin (2 x)}{1+4 \sin ^{2}(x)} d x .
$$

Problem 3 [5 points]

In class we encountered the integral

$$
L=\frac{1}{2} \int_{0}^{2} \sqrt{1+y^{2}} d y
$$

(a) Writing $\sqrt{1+y^{2}}$ as $1 \sqrt{1+y^{2}}$, use integration by parts in order to express $\int \sqrt{1+y^{2}} d y$ in terms of $\int\left(1+y^{2}\right)^{-1 / 2} d y$ and some other function.
(b) Then compute

$$
\int\left(1+y^{2}\right)^{-1 / 2} d y
$$

by using the substitution $y=\sinh (x)$ (see Homework 3).
(c) Put parts (a) and (b) together to compute L.

Problem 4 [3 points]

Let f and g be integrable functions. Prove the Cauchy-Schwarz inequality

$$
\left|\int_{a}^{b} f(x) g(x) d x\right| \leq \sqrt{\int_{a}^{b} f(x)^{2} d x} \sqrt{\int_{a}^{b} g(x)^{2} d x}
$$

Hint: Start from the fact that the integral of $(f(x)-\lambda g(x))^{2}$ is bigger or equal zero for all real λ.

