Advanced Calculus

Homework 7

Due on November 12, 2018

Problem 1 [6 points]

Let $f:[1,\infty)\to [0,\infty)$ be nonincreasing (i.e., for $x\leq y$ we have $f(x)\geq f(y)$).

(a) Show that

$$\sum_{k=2}^{n} f(k) \le \int_{1}^{n} f(x) \, dx \le \sum_{k=1}^{n} f(k).$$

Here you can use the fact that nonincreasing functions are integrable.

- (b) Show that $\sum_{k=1}^{n} \frac{1}{k}$ diverges logarithmically for large n. (Note: The constant $\gamma = \lim_{n\to\infty} \left(\sum_{k=1}^{n} \frac{1}{k} \ln(n)\right)$ is called Euler-Mascheroni constant.)
- (c) Show that $\sum_{k=1}^{\infty} \frac{1}{k^a}$ converges for all a > 1.
- (d) Does $\sum_{k=2}^{\infty} \frac{1}{k \ln(k)}$ converge or diverge? What about $\sum_{k=2}^{\infty} \frac{1}{k(\ln(k))^b}$ for b > 1? (*Hint: substitution.*)

Problem 2 [6 points]

Compute the integrals

(a)
$$\int \frac{\cos(\ln(x))}{x} dx \text{ for } x > 0,$$

(b)
$$\int x^2 \sin(x) \, dx,$$

(c)
$$\int \frac{1}{x^2 + 2x + 6} \, dx,$$

(d)
$$\int \frac{\sin(2x)}{1 + 4\sin^2(x)} dx.$$

Problem 3 [5 points]

In class we encountered the integral

$$L = \frac{1}{2} \int_0^2 \sqrt{1 + y^2} \, dy.$$

- (a) Writing $\sqrt{1+y^2}$ as $1\sqrt{1+y^2}$, use integration by parts in order to express $\int \sqrt{1+y^2} \, dy$ in terms of $\int (1+y^2)^{-1/2} \, dy$ and some other function.
- (b) Then compute

$$\int (1+y^2)^{-1/2} \, dy$$

by using the substitution $y = \sinh(x)$ (see Homework 3).

(c) Put parts (a) and (b) together to compute L.

Problem 4 [3 points]

Let f and g be integrable functions. Prove the Cauchy-Schwarz inequality

$$\left| \int_a^b f(x)g(x) \, dx \right| \le \sqrt{\int_a^b f(x)^2 \, dx} \, \sqrt{\int_a^b g(x)^2 \, dx}.$$

Hint: Start from the fact that the integral of $(f(x) - \lambda g(x))^2$ is bigger or equal zero for all real λ .