Advanced Calculus

Homework 8

Due on November 19, 2018

Problem 1 [3 points]

Compute the integrals
(a)

$$
\int \frac{2 x}{x^{2}+x-12} d x
$$

(b)

$$
\int \frac{2 x^{3}-4 x^{2}+x-1}{x^{3}-4 x^{2}+5 x-2} d x .
$$

Problem 2 [3 points]

Compute the following improper integrals, in case they exist.
(a)

$$
\int_{0}^{\infty} e^{-\lambda x} d x, \quad(\lambda \in \mathbb{R})
$$

(b)

$$
\int_{-\infty}^{\infty} \frac{x}{\left(x^{2}+\lambda^{2}\right)^{2}} d x, \quad(\lambda \in \mathbb{R})
$$

(c)

$$
\int_{0}^{1} \frac{x}{\sqrt{1-x^{2}}} d x
$$

Problem 3 [4 points]

Let $R(x)$ be a rational function. Then integrals of the form $\int R(\sin x, \cos x, \tan x) d x$ can be solved by using substitution.
(a) One can start by replacing $\sin x=\frac{2 y}{1+y^{2}}$. What is then the substitution for $\cos x$ and $\tan x$?
(b) Use this substitution to calculate

$$
\int \frac{1}{2+\sin x} d x .
$$

Problem 4 [4 points]

It is known that the Fresnel integral

$$
f(x)=\int_{0}^{x} \cos \left(t^{2}\right) d t
$$

is not elementary.
(a) Express $f(x)$ as a power series.
(b) Show that the improper integral

$$
\int_{0}^{\infty} \cos \left(t^{2}\right) d t
$$

converges. (Note: This problem is independent of part (a).)

Problem 5 [6 points]

(a) The gamma function is defined by

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t
$$

Prove that $\Gamma(n)=(n-1)$! for all natural numbers $n \geq 1$.
(b) In order to calculate integrals of the form $\int_{a}^{b} e^{n f(x)} d x$ one can use Laplace's method. Assume f has a unique maximum $x_{m} \in(a, b)$ and that f is twice (continuously) differentiable with $f^{\prime \prime}\left(x_{m}\right)<0$. Then,

$$
\lim _{n \rightarrow \infty} \frac{\int_{a}^{b} e^{n f(x)}}{\sqrt{\frac{2 \pi}{n\left|f^{\prime \prime}\left(x_{m}\right)\right|}}} e^{n f\left(x_{m}\right)}=1
$$

i.e., for very large n,

$$
\int_{a}^{b} e^{n f(x)} d x \approx \sqrt{\frac{2 \pi}{n\left|f^{\prime \prime}\left(x_{m}\right)\right|}} e^{n f\left(x_{m}\right)}
$$

Derive the latter formula in a non-rigorous way using a Taylor expansion to second order and just assuming that the remainder term behaves nicely. (You may use the fact that $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$.)
(c) Use the results from part a) and b) to derive (in a non-rigorous way) Stirling's approximation

$$
n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

for large n.

Bonus Problem [3 extra points]

Note: The bonus problems go a bit beyond what is covered in class, and problems like that will not be posed in the exams.
In Homework 6 we studied convexity a bit closer and derived Jensen's inequality. Now, using convexity of $-\ln$, one can prove Young's inequality for products. It states that for positive real x, y and p, q with $\frac{1}{p}+\frac{1}{q}=1$,

$$
x y \leq \frac{x^{p}}{p}+\frac{y^{q}}{q} .
$$

With that inequality at hand, one can prove the following generalization of the CauchySchwarz inequality. For positive p, q with $\frac{1}{p}+\frac{1}{q}=1$,

$$
\left|\int_{a}^{b} f(x) g(x) d x\right| \leq\left(\int_{a}^{b}|f(x)|^{p} d x\right)^{1 / p}\left(\int_{a}^{b}|g(x)|^{q} d x\right)^{1 / q} .
$$

This is called Hölder's inequality. Prove these two inequalities.

