Advanced Calculus

Homework 9

Due on November 26, 2018

Problem 1 [3 points]

Show that the functions

$$
f_{n}(x)=(n+1) x^{n}(1-x)
$$

converge to zero for all $x \in[0,1]$, but possess a maximum at $x=\frac{n}{1+n}$. What is the value of f_{n} at the maximum in the limit $n \rightarrow \infty$? Does f_{n} converge uniformly to zero?

Problem 2 [6 points]

Let's do a few more exercises about integration by substitution. Compute for $a, b>0$
(a)

$$
\int \frac{x^{2}}{\sqrt{a^{2}-b^{2} x^{2}}} d x \quad \text { with a substitution using sine }\left(x<\frac{a^{2}}{b^{2}}\right),
$$

(b)

$$
\int \frac{1}{x^{2} \sqrt{a^{2}+b^{2} x^{2}}} d x \quad \text { with a substitution using tangens, }
$$

(c)

$$
\int \sqrt{a^{2}+b^{2} x^{2}} d x \text { with a substitution using the hyperbolic sine. }
$$

Problem 3 [3 points]

Find the solution to the logistic growth model

$$
\frac{d y}{d x}=\lambda y\left(1-\frac{y}{k}\right)
$$

by separation of variables.

Problem 4 [3 points]

Imagine there is a hole in the earth, straight from the north to the south pole. Now you let a ball of mass m fall through that hole (with zero initial velocity). Then from Newton's gravitational law it follows that the potential energy for $r \leq R_{E}$ is

$$
V(r)=-\frac{G_{N} m M_{E}}{2 R_{E}^{3}}\left(3 R_{E}^{2}-r^{2}\right),
$$

where r is the distance from the center of the earth, R_{E} the radius of the earth (we assume the earth is a perfect sphere), M_{E} the mass of the earth and G_{N} is Newton's gravitational constant. The corresponding gravitational force is $F_{G}(r)=-\frac{d V(r)}{d r}$. Newton's second law is $F=m a(t)$, where $a(t)=\frac{d v(t)}{d t}$ is the acceleration, and $v(t)=\frac{d r(t)}{d t}$ is the velocity.
(a) What differential equation follows from setting $F=F_{G}$?
(b) How long does it take the ball to go once from the north to the south pole?

Problem 5 [3 points]

The motion of a body in the earth's gravitational field is described by the differential equation

$$
y^{\prime \prime}=-\frac{G_{N} M}{y^{2}},
$$

with constants G_{N} and M, and where y is the distance of the body to the center of earth. Determine the constants in the solution such that $y(0)=R$ (for some constant R, the radius of earth) and $y^{\prime}(0)=v$ (for some constant v, the initial velocity). Then, find the escape velocity, i.e., the smallest velocity v for which the body will not return to earth. (Note that here it is enough to solve the ODE for $v(y)$ only. If v is always positive the body will never return to earth.)

Problem 6 [2 points]

Find the solution to

$$
y^{\prime \prime}+5 y^{\prime}+6 y=0
$$

with initial conditions $y(0)=2$ and $y^{\prime}(0)=3$.

