Advanced Calculus

Homework 10

Due on December 3, 2018

Problem 1 [2 points]

Consider the linear ODE

$$
y^{\prime \prime}-2 \alpha y^{\prime}+\left(\alpha^{2}+\beta^{2}\right) y=0
$$

for some $\alpha, \beta \in \mathbb{R}$.
(a) Find the zeros of the characteristic polynomial and write down the general solution (involving complex exponentials).
(b) Find the general real solution.

Problem 2 [3 points]

Find the general real solution of

$$
y_{1}^{\prime \prime}+y_{1}^{\prime}+y_{1}=0,
$$

and of

$$
y_{2}^{\prime \prime}-2 y_{2}^{\prime}+10 y_{2}=0 .
$$

How do the solutions $y_{1}(x)$ and $y_{2}(x)$ behave for large x ?

Problem 3 [9 points]

Let's also do one more exercise about differential equations. We consider the harmonic oscillator again, but this time with friction and a driving force, i.e.,

$$
m \frac{d^{2} x}{d t^{2}}+r \frac{d x}{d t}+k x=f(t)
$$

where $m, r, k>0$, and $f(t)$ is an external driving force. We are after a solution $x(t)$ of this equation.
(a) Let us consider the homogeneous case first, i.e., $f=0$.
(1) Find the general real solution to the homogeneous equation. (You will need to consider different cases depending on m, r, k.)
(2) How do the solutions behave for large t ?
(3) Do you recover the solution of the harmonic oscillator without friction when $r \rightarrow 0$?
(b) Now consider the inhomogeneous case with periodic force.
(1) Find one particular complex solution to the inhomogeneous equation with $f(t)=$ $e^{i \omega t}$.
(2) By using Euler's formula, use part (1) to find one particular real solution to the inhomogeneous equation with $f(t)=\sin (\omega t)$.
(3) For $f(t)=\sin (\omega t)$ and $r^{2}<2 k m$, which driving frequency ω makes the amplitude of the solution maximal? This is the so-called resonance frequency. What happens to the amplitude at resonance if $r \rightarrow 0$?

Problem 4 [3 points]

Show that

$$
\begin{gathered}
\int_{0}^{2 \pi} \sin (k x) \cos (\ell x) d x=0 \quad \forall k, \ell \in \mathbb{N}, \\
\int_{0}^{2 \pi} \cos (k x) \cos (\ell x) d x=0=\int_{0}^{2 \pi} \sin (k x) \sin (\ell x) d x \quad \forall k \neq \ell \in \mathbb{N}, \\
\int_{0}^{2 \pi} \cos ^{2}(k x) d x=\pi=\int_{0}^{2 \pi} \sin ^{2}(k x) d x \quad \forall k \geq 1 .
\end{gathered}
$$

Problem 5 [3 points]

Compute the Fourier series of the 2π-periodic function that is equal

$$
f(x)=|x-\pi|
$$

for $0 \leq x \leq 2 \pi$.

Bonus Problem [3 extra points]

Note: The bonus problems go a bit beyond what is covered in class, and problems like that will not be posed in the exams.
We consider the ODE describing a population development with harvesting,

$$
\frac{d x}{d t}=x(1-x)-c,
$$

where $c>0$ is the harvest quota. Find the zeros of the right-hand side of the equation and draw the direction field (arrows in the (t, x)-plane indicating the slope for different x) for the different cases of c. From that deduce how the solution will behave for large t depending on the initial condition for the different cases of c.

