Advanced Calculus
Prof. Sören Petrat
office: 112, Res. I
Organization:

- see syllabus on campusuet
- welosite
- class: Mon, Wed: 11:1s-12:30, 2H Res. I
- weekly homenork sheets (Starting Mon, Sep. 10) G new sheet on Mondays, dur Mondays before class \rightarrow graded (two worst sheets disregammled for grading)
- weekly tutorial
-TA: Maria Oprea, Benedict Stock
- 2 exams: - midterm (Wed, Och. 24)
- final lin final exam period, Dec)
- grade: 20% HW (final $>$ midterm
30% midterm
50% final \Rightarrow midterm grade $=$ final grade)

Topics: 1. Introduction (function, limits, continuity,
power series, complex numbers)
2. Differentiation
3. Integration
4. Differential Equations
5. Fowier series
6. Many variable (higher dimension)

1. Introduction
1.1 Polynomials

Definition: a polynomial of degree $n(n>0)$ is

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

with Some $a_{0}, \ldots, a_{n} \in \mathbb{R} \quad\left(\mathbb{R}=\right.$ real numbers) $\quad\left(a_{n} \neq 0\right)$
polynomial equation: $x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+q_{0}=0$
($a_{n}=1$ here by convention)
L_{s} solutions are called roots of the eq.
$=$ zeroes of the polynomial
$n=1:$ linear eq.: $x+a_{0}=0 \Rightarrow$ sol: $x=-a_{0}$
\Rightarrow there is always exactly one solution
$n=2$: quadratic eq.: $x^{2}+a_{1} x+y_{0}=0$
solution: $x^{2}+a_{1} x+\left(\frac{a_{1}}{2}\right)^{2}=\left(\frac{a_{1}}{2}\right)^{2}-a_{0}$

$$
\begin{aligned}
& \Leftrightarrow\left(x+\frac{a_{1}}{2}\right)^{2}=\left(\frac{a_{1}}{2}\right)^{2}-a_{0} \\
& \Leftrightarrow \text { zeroes: } x_{ \pm}=-\frac{a_{1}}{2} \pm \sqrt{\left(\frac{a_{1}}{2}\right)^{2}-a_{0}}
\end{aligned}
$$

a) $\left(\frac{a_{1}}{2}\right)^{2}>a_{0} \Rightarrow$ two real roots
b) $\left(\frac{a_{1}}{2}\right)^{2}=a_{0} \Rightarrow$ one real not
c) $\left(\frac{a_{1}}{2}\right)^{2}<a_{0} \Longrightarrow$ no real root (but two complex roots Solar)
graphs of $f(x)=x^{2}+91 x+90$
a)

$u=3$: cubic eq: $x^{3}+a_{2} x^{2}+a_{1} x+a_{0}=0$
\rightarrow no explicit fomida, but recipes ls there is at least one real root

Recipe: simplify eq. by setting $y=\frac{9_{2}}{3}+X \quad\left(x=y-\frac{q_{2}}{3}\right)$

$$
\left(y-\frac{a_{2}}{3}\right)^{3}+a_{2}\left(Y-\frac{a_{2}}{3}\right)^{2}+a_{1}\left(y-\frac{a_{2}}{3}\right)+a_{0}=0
$$

note:
$(a+b)^{2}=a^{2}+2 a b+b^{2}$
\Rightarrow compute...

$$
\left((a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}\right.
$$

$$
\Leftrightarrow Y^{3}+\underbrace{\left(-\frac{a_{2}^{2}}{3}+\alpha_{1}\right)}_{=p} Y+\underbrace{\left(\frac{2}{27} a_{2}^{3}-\frac{a_{1} a_{2}}{3}+n_{0}\right)}_{q}=0
$$

\Rightarrow only need to solve $y^{3}+p y+q=0$
solution trick $\left(V_{\text {ie ta }}\right)$: set $v=z-\frac{p}{3 z}$

$$
\begin{aligned}
& \Rightarrow\left(z-\frac{p}{3 z}\right)^{3}+p\left(z-\frac{p}{3 z}\right)+q=0 \\
& \Rightarrow z^{6}+q z^{3}-\frac{p^{3}}{27}=0 \\
& \Rightarrow\left(z^{3}\right)^{2}+q\left(z^{3}\right)-\frac{p^{3}}{27}=0 \\
& \Rightarrow \text { sol } \therefore z^{3}=-\frac{q}{2} \pm \sqrt{\left(\frac{q}{2}\right)^{2}+\frac{p^{3}}{27}}
\end{aligned}
$$

\Rightarrow depending on pond g there can be $1,2,3$ real roots (need complex numbers \rightarrow later)
$n>3:$ - for $n=4$ there is a solution recipe

- for $u>4$ no general recipe (Abel, Galois, 19th canting) numerical methods necessary (later)

Theorem: any polynomial of degree n has exactly n possibly complex roots.
(un proof here) $\quad \rightarrow$ note: comped multiplicity ias in, e.f. $(x-1)^{4}=0$

