some identities:

$$
\begin{aligned}
& \cdot \sum_{k=0}^{n}\binom{n}{k}=(1+1)^{n}=2^{n} \\
& \cdot \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=(1-1)^{n}=0 \\
& \cdot \sum_{k=0}^{n}\binom{m-1+k}{k}=\binom{m+n}{n} \quad(m \geqslant 1)
\end{aligned}
$$

\rightarrow can be proven by induction (HW)

- HW: prove that $\sum_{k=0}^{n-1} x^{k}=\frac{1-x^{n}}{1-x} \quad(x \neq 1)$

Later: $\sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x}(|x|<1)$ (geometric series

- HW next week: Theorem: $(1-x)^{-m}=\sum_{k=0}^{\infty}\binom{m+k \cdot 1}{k} x^{k}$ (HW sheet 2)

$$
|x|<1 \text {, and } m \geqslant 1 \text { (integer) }
$$

2.3 Limits
limits are basis of. Analysis (real numbers, derivatives, integrals,...)
Sequence: $\left(a_{n}\right)_{n \in \mathbb{N}}=\left(a_{n}\right)_{n \geqslant 1}=\left(a_{1}, a_{2}, a_{3}, \ldots\right)$
here, we usually deal with seq. 5 of real numbers
Examples: $\cdot\left(a_{n}\right)_{n \in \mathbb{N}}$, with $a_{n}=n$

$$
\text { - }\left(a_{n}\right)_{n \in \mathbb{N}} \text {, with } a_{n}=\frac{1}{n^{2}} \text { i.e., }\left(a_{n}\right)_{n \geqslant 1}=\left(\frac{1}{1^{2}}, \frac{1}{2^{2}}, \frac{1}{32}, \ldots\right)
$$

central concept: convergence of seq. s
loose definition: If the a_{n} 's come arbitrarily close to some number a for large 4 , we say $\left(a_{n}\right)_{u \in \mathbb{N}}$ converges to a. The number a is called the limit of the sequence, andre write $a=\lim _{n \rightarrow \infty} a_{n}$ or $a_{n} \xrightarrow{n \rightarrow \infty} a$.
If no such a exists, the seq. diverges.
for rigorous definition:

- arbitrarily close \longleftrightarrow for all $\varepsilon>0$ (no matter how small)
- arbitrarily close to $a \longleftrightarrow \quad\left|a_{n}-a\right|<\varepsilon$
- for large $n \leftrightarrow$ there is some $N \in \mathbb{N}$, large depending on $\varepsilon, s . t$.

$$
\left.\left|\alpha_{N}-a\right|<\varepsilon \quad \text { (or }\left|a_{n}-a\right|<\varepsilon \text { for all } n \geqslant N\right)
$$

Fomal/rigonoss def. of convergence:
For all $\varepsilon>0$ there is an $N \in \mathbb{N}$, s.t. $\left|a_{n}-a\right|<\varepsilon$ for all $u \geqslant N$ $(\varepsilon \in \mathbb{R})$ (for some a).

$$
\begin{aligned}
\text { Ex.: } & \lim _{n \rightarrow \infty} \frac{1}{n^{2}}
\end{aligned}=0 \quad \begin{aligned}
& \cdot \lim _{n \rightarrow \infty} \frac{n}{n+1}=\lim _{n \rightarrow a} \frac{\frac{1}{n} \cdot n}{\frac{1}{n} \cdot n+\frac{1}{n} \cdot 1}=\lim _{n \rightarrow \infty} \frac{1}{1+\frac{1}{n}}=1 \text { (nerd to "pull } \\
& \text { lime inside") }
\end{aligned}
$$

$$
\begin{aligned}
& \text { or: } \lim _{n \rightarrow \infty} \frac{n}{n+1}=\lim _{n \rightarrow \infty} \frac{n+1-1}{n+1}=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n+1}\right)=1 \\
& \cdot \lim _{n \rightarrow \infty} \frac{2 n^{2}-1}{n^{2}+1}=2
\end{aligned}
$$

- $a_{n}=n$ diverges
- $a_{n}=(-1)^{n}$ diverges (but not $a_{n} \rightarrow \pm \infty$)
- geometric progression $a_{n}=q^{n}$ for some $q \in \mathbb{R}$

$$
\lim _{n \rightarrow \infty} q^{n}=\left\{\begin{array}{lll}
0 & , & \text { for }|q|<1 \\
1 & , & \text { for } q=1 \\
\text { diverges } & \text { fo } \infty & \text { for } q>1 \\
\text { diverges } & \text { for } q<-1
\end{array}\right.
$$

Properties: I) If $a_{n} \xrightarrow{n \rightarrow \infty} a$, $b_{n} \xrightarrow{n \rightarrow \infty} b$ then

$$
\begin{align*}
& \text { - } a_{n}+b_{n} \xrightarrow{n \rightarrow \infty} a+b \quad(*) \tag{*}\\
& \text { - } a_{u} \cdot b_{n} \xrightarrow{n \rightarrow \infty} a \cdot b \\
& \text { - } \frac{a_{n}}{b_{n}} \xrightarrow{n \rightarrow \infty} \frac{a}{b} \text { if } b_{n} \neq 0 \text { for all and } b \neq 0
\end{align*}
$$

formal proof of (*) : wa know $a_{n} \rightarrow \infty$, i.e., $\mid a_{n}-a l$ arbitrarily small for large 4 (and same for b_{n}.
Then $\left|\left(a_{n}+b_{n}\right)-(a+b)\right|=\left|a_{n}-a+b_{n}-b\right| \leq\left|a_{n}-a\right|+\left|b_{n}-b\right|$ which is arbitrarily small.
note: $|x+y| \leq|x|+|y|$ is called the triangle inequality (check for real numbers...) Later: also true for vectors

2) If seq. $\left(a_{n}\right)_{n \in \mathbb{N}}$ converts, it is bounded, i.e., there is some B, st. for all $u \in \mathbb{N}$, we have $\left|a_{n}\right| \leqslant B$.
Converse is nod tue ,e.y., (-1$)^{n}$ is bounded but doesn't converge. Statement in mathematical notation:

$$
\left(a_{n}\right)_{\text {veIN }} \text { converges } \Longrightarrow \underbrace{\exists B>0 \text {, s.t. }}_{\text {there exists }} \underset{\substack{ \\\text { oral }}}{\forall} n \in \mathbb{N}:\left|\alpha_{n}\right| \leq B
$$

3) Def.: A sequence $\left(a_{n}\right)_{u \in m}$ is called Cauchy sequence if

$$
\forall \varepsilon>0 \quad N \in / N_{c} \text { s.t. }\left|a_{n}-a_{m}\right|<\varepsilon \quad \forall u, m \geqslant N .
$$

uste: for $a_{n} \in \mathbb{R}$, convergence of $\left(a_{n}\right)_{u \in \mathbb{N}} \Leftrightarrow\left(a_{n}\right)_{u \in \mathbb{N}}$ Cauchy extra note: triangle ines.

$$
" \Rightarrow \text { " always the: }\left|a_{u}-a_{m}\right|=\left|a_{m}-a-a_{m}+a\right| \leq\left|a_{m}-a\right|+\left|a_{m}-a\right|
$$

${ }^{\prime \prime}=$
"not necessaincy the. Consider ie.g. 1 Cauchy sequences of rational numbers. Those might not have a limit in the rational numbers, ie., they don't converge in the rational numbers, but they cold have, e-g. $\sqrt{2}$ as a limit.

