- Maximum Thin:

If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then it has a maximum and minimum in $[a, b]$.
Note:- domain $=[a i b]$ is important here
a subset of \mathbb{R} that is closed and bounded is called compact. (very important concept \rightarrow (aten...)
Ex. (of where them. does nt hold):

$$
\text { - } f:(0,1] \rightarrow \mathbb{R}, x \mapsto f(x)=\frac{1}{x} \quad \text { (domain not closed) }
$$

- $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto f(x)=x \quad$ (domain not bounded)

$$
\text { - } f:[0,2] \rightarrow T R, x \mapsto f(x)=\left\{\begin{array}{cl}
\frac{1}{x-1} & \text { for } x \neq 1 \\
0 & , x=1
\end{array} \quad \text { (not cont. at } x=1\right. \text {) }
$$

- $f:[0,1] \rightarrow \mathbb{R}, x \mapsto f(x)=\left\{\begin{array}{cc}-3 x+\sin \left(\frac{1}{x}\right), & , x \neq 0 \\ 0 & , x=0\end{array}\right.$ (bounded,

$$
\begin{gathered}
=\frac{1}{x} \\
\text { e. } g_{\cdot 1} \sin \left(\frac{\pi}{2}+1000 \cdot 2 \Omega\right)=1 \Rightarrow f(x)<1 \quad \forall x \in[0,1]
\end{gathered}
$$

limits of functions:
$f: A \rightarrow \mathbb{R}$, then $\lim _{x \rightarrow a} f(x)=b$ if \forall sequences $\left(a_{n}\right)_{u \in \mathbb{N}}$ with $a_{n} \in A$, $a_{n} \neq a \quad \forall u \in \mathbb{N}$, and $\lim _{n \rightarrow \infty} a_{n}=a$, also (interesting if $a \notin A$)

$$
f\left(a_{n}\right) \xrightarrow{n \rightarrow \infty} b
$$

one-sided limits:
$\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \neq a} f(x)$ if additionally $a_{u}>a \quad \forall u \in \mathbb{N}$
$\lim _{x \rightarrow a^{-}} f(x)=\lim _{x ク_{a}} f(x)$ if additionally $a_{n}<a \quad \forall n \in \mathbb{N}$
Ex:: $f: \mathbb{R} \backslash\{3\} \rightarrow \mathbb{R}, x \mapsto f(x)=\frac{x^{2}-9}{x-3}$

$$
\begin{aligned}
& \begin{aligned}
& \lim _{x \rightarrow 3} f(x)=\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}=\lim _{n \rightarrow \infty} \frac{a_{n}^{2}-9}{a_{n}-3}=\lim _{n \rightarrow \infty} \frac{\left(a_{n}-3\right)\left(a_{n}+3\right)}{a_{n}-3} \\
&=\lim _{n \rightarrow \infty}\left(a_{n} \neq 3, a_{n} \rightarrow 3\right) \\
&=6 \\
& \cdot f(x)=\frac{x}{|x|} \lim _{x \rightarrow 0^{-}} \frac{x}{|x|}=\lim _{\substack{n \rightarrow \infty \\
a_{n} \rightarrow 0 \\
a_{n}<0 \\
\sigma_{n}}} \frac{\prod_{n}}{\left|a_{n}\right|}=-1 \forall n
\end{aligned} \\
& (f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}) \quad
\end{aligned}
$$

$$
\lim _{x \rightarrow 0^{+}} \frac{x}{|x|}=1
$$

$\lim _{x \rightarrow 0} \frac{x}{|x|}$ doesn't exist

- fix $x>0, \lim _{y>0} x^{Y}=1$ (proof later)

- fix $y>0, \lim _{x>0} x^{y}=0 \quad$ (proof (after)

$$
f:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \backslash\{0\} \rightarrow \mathbb{R}, x \mapsto f(x)=\frac{3 x^{2}+5 x}{\sin x}
$$

later: $\lim _{x \rightarrow 0} \frac{3 x^{2}+5 x}{\sin x}=5$
1.5 Infinite Series
$S_{n}=\sum_{\substack{k=0 \\(k=1)}}^{n} a_{k}$ are called partial sums
Ex:- geometric seines: $\sum_{k=0}^{n} x^{k}=\frac{1-x^{n+1}}{1-x}$
-arithmetic series: $\sum_{k=1}^{n} k=\frac{1}{2} n(n+1)$
one (move) method to compute series: difference method
suppose $a_{k}=b_{k}-b_{k-1}$ then

$$
\begin{aligned}
& S_{n}=\sum_{k=1}^{n} a_{k}=\sum_{k=1}^{n}\left(b_{k}-b_{k-1}\right)=\left(b_{1}-b_{0}\right)+\left(b_{2}-b_{1}\right)+\left(b_{3}-b_{2}\right)+\ldots \\
& +\left(b_{n}-b_{n-1}\right) \\
& =-b_{0}+b_{n} \geq \\
& \pm \sum_{k=1}^{n} b_{k}-\sum_{\sum_{k=0}^{n-1} b_{k}}^{\sum_{k=1}^{n} b_{k-1}}=\underbrace{b_{n}+\sum_{k=1}^{n-1} b_{k}}_{\sum_{k=1}^{n} b_{k}} \underbrace{b_{0}-\sum_{k=1}^{n-1} b_{k}}_{-\sum_{k=0}^{n-1} b_{k}}
\end{aligned}
$$

Ex. $: \sum_{k=1}^{n}\left(k^{3}-(k-1)^{3}\right)=n^{3}$
now: Get $u \rightarrow \infty$ for the sequence $\left(S_{n}\right)_{n \in \mathbb{N}}$
infinite senses: $\sum_{k=0}^{\infty} a_{k}:=\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} a_{k}$

Ex:: $|x|<\mid$ we have $\sum_{k=0}^{\infty} x^{k}=\lim _{n \rightarrow \infty} \frac{1-x^{n}}{1-x}=\frac{1}{1-x}$

Does $\sum_{k=0}^{\infty} a_{k}$ converge? Need convergence criteria.
One criterion:
Gibuiz: consider $\sum_{k=0}^{\infty}(-1)^{k} a_{k}$ with $a_{k}>0 \quad \forall k \geqslant 0$.
sn If $a_{k+1} \leq a_{k}$ and $\lim _{k \rightarrow \infty} a_{k}=0$, then the series converges.

Proof: next time

