Session 7 Sep. 24, 2018

How do ne multiply

$$\begin{pmatrix} \infty \\ \Sigma \\ k=0 \end{pmatrix} \cdot \begin{pmatrix} \infty \\ L \\ k=0 \end{pmatrix} = (a_0 + a_1 + a_2 + a_3 + ...) \cdot (b_0 + b_1 + b_2 + b_3 + ...)$$
?
 \longrightarrow many ways to multiply this out...

One possibility is the so-called Carchy product:

$$\left(\sum_{k=0}^{\infty}a_{kk}\right)\left(\sum_{k=0}^{\infty}b_{kk}\right) := a_{0}b_{0} + (a_{0}b_{1} + a_{1}b_{0}) + (a_{0}b_{2} + a_{1}b_{1} + a_{2}b_{0}) + \dots$$
$$= \sum_{n=0}^{\infty}\sum_{j=0}^{n}a_{n-j}b_{j}$$

Thun: If
$$\sum_{k=0}^{\infty} a_k = \alpha$$
 and $\sum_{k=0}^{\infty} b_k = b$ converge absolutely, then

$$a \cdot b = \left(\frac{2}{k=0} a_k \right) \left(\frac{2}{k=0} b_k \right) = \frac{2}{n=0} \frac{2}{j=0} a_{k-j} \frac{b_j}{j}$$

i.e., this series converges

root fast: convergence if livesup
$$\sqrt{|a_{u,x}^{k}|} = \lim_{k \to \infty} \int_{|a_{u,k}|}^{|x|} |x| < \frac{1}{|a_{u,k}|} < \frac{1}{|x|} < \frac{1}{|a_{u,k}|} = 2$$

 $= 3 \cdot absolute convergence if $|x| < \frac{1}{|a_{u,k}|} = 2$
 $\cdot divergence if $|x| > 0$
 $\cdot inconclusive if $|x| = 0$ (might convergence)
 $\cdot inconclusive if $|x| = 0$ or ∞ .
 $\cdot ve have $P = \sup \{ |x| : \sum_{k=0}^{\infty} a_{k,x} \land convergence \}$
 $\cdot ue have $P = \sup \{ |x| : \sum_{k=0}^{\infty} a_{k,x} \land convergence \}$
 $\cdot ue have $P = \sup \{ |x| : \sum_{k=0}^{\infty} a_{k,x} \land convergence \}$
 $\cdot ue have $P = \sup \{ |x| : \sum_{k=0}^{\infty} a_{k,x} \land convergence \}$
 $\cdot ue have $P = \sup \{ |x| : \sum_{k=0}^{\infty} a_{k,x} \land convergence \}$
 $\cdot ue have $P = \sup \{ |x| : \sum_{k=0}^{\infty} a_{k,x} \land convergence \}$
 $\cdot ue have $p = \sup \{ |x| : \sum_{k=0}^{\infty} a_{k,x} \land convergence \}$
 $\cdot ue have $(|x| = 0 \land (|x|) \land (|$$$$$$$$$$$$$$$$$$$$

endpoints:
$$P(\frac{1}{2}) = \sum_{k=0}^{\infty} (2 \cdot \frac{1}{2})^k = \sum_{k=0}^{\infty} 1$$
 diverges $\longrightarrow \infty$
 $\cdot P(-\frac{1}{2}) = \sum_{k=0}^{\infty} (2 \cdot (-\frac{1}{2}))^k = \sum_{k=0}^{\infty} (-1)^k$ diverges (oscillates)
note: $\cdot | f convergions of powerseries P(x)$ and $Q(x)$ overlap, also
 $T(x) + Q(x)$ and $P(x) \cdot Q(x)$ convertex lin overlapping region)
 $\cdot | f P(x)_1 Q(x)$ converge $\forall \times (Q = \infty)$, then also
 $P(Q(x))$ conv. $\forall \times$
now: neut to consider $(1 + \frac{x}{n})^n$ $(e.g., interest compounding)$

what is
$$\lim_{N \to \infty} (1 + \frac{x}{n})^N$$
 if it exists, depending on X ?

binomial flum:

$$\left(\left(+\frac{\chi}{h}\right)^{h}=\frac{\chi}{k=0}\begin{pmatrix}h\\k\end{pmatrix}\left(\frac{\chi}{h}\right)^{k}\begin{pmatrix}\frac{h-k}{2}\\-1\end{pmatrix}=\frac{\chi}{k=0}\frac{\binom{h}{k}}{h^{k}}\chi^{k}$$

$$\left(\frac{\chi}{h}\right)^{h}=\frac{\chi}{k=0}\frac{\binom{h}{k}}{h^{k}}\chi^{k}$$

$$now \frac{\binom{k}{k}}{n^{k}} = \frac{n \cdot (n - 1) \cdot \dots \cdot (n - k + 1)}{k! n^{k}} = \frac{1}{k!} \left(\left| -\frac{1}{n} \right| \left| \left| -\frac{2}{n} \right| \right| \dots \cdot \left(\left| -\frac{(k - 1)}{n} \right| \right)$$

$$= \left(\left|+\frac{x}{n}\right|^{n}\right)^{n} = \frac{\frac{w}{2}}{\frac{k}{k-1}} \frac{x^{k}}{\frac{k!}{k}} \left(\left|-\frac{1}{n}\right|\right) \cdot \dots \cdot \left(\left|-\frac{(k-1)}{n}\right|\right) + 1$$
$$= 1 + x + \frac{x^{2}}{2!} \left(\left|-\frac{1}{n}\right|\right) + \frac{x^{3}}{3!} \left(\left|-\frac{1}{n}\right|\right) \left(\left|-\frac{2}{n}\right|\right) + \dots$$

gress:
$$\lim_{n \to \infty} (1 + \frac{x}{n})^n = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

need to be coveful with $\lim_{n \to \infty} (e.g., \lim_{n \to \infty} \sum_{k=1}^{\infty} \frac{1}{n} \neq \sum_{k=1}^{\infty} D = 0)$
 $= 1$
but here without proof, the gress is correct
 $= > \lim_{n \to \infty} (1 + \frac{x}{n})^n = \sum_{k=0}^{\infty} \frac{x^k}{k!}$ which converges absolutely $\forall x \in \mathbb{R}$
 $(ratio test).$

$$\begin{aligned} \text{How:} \quad \sum_{k=0}^{\infty} \frac{x^{k}}{k!} \quad \sum_{j=0}^{\infty} \frac{y^{k}}{k!} = \sum_{n=0}^{\infty} \frac{y^{n}}{e=0} \frac{x^{n-e}}{(u-e)!} \frac{y^{e}}{e!} \\ &= \sum_{n=0}^{\infty} \frac{1}{h!} \sum_{e=0}^{n} \binom{n}{e} x^{n-e} y^{e} \\ &= \sum_{n=0}^{\infty} \frac{1}{h!} \sum_{e=0}^{n} \binom{n}{e} x^{n-e} y^{e} \\ &= (x_{n}y)^{n} \\ &= \sum_{h=0}^{\infty} \frac{(x_{n}y)^{n}}{h!} \end{aligned}$$

So
$$f(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$
 fulfills $f(x) f(y) = f(x+y)$
=> f is exponentiation (i.e., $f(x) = e^x$ for some $e \in \mathbb{R}$.
To what base, i.e., what is e^2 , $e = e^1 = f(1) = \sum_{k=0}^{\infty} \frac{1}{k!}$
 e is called Euler's number, and $e \approx 2.718...$
=> $f(x) = e^x$ with property $e^x e^y = e^{x+y}$
 $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$ for any $x \in \mathbb{R}$.