3.3 Sequences of Functions

T Session 18 Nov. 14, 2018

consider sequence of fct.s (fu(x)) NEW 1 fn: [a1b] -> TR

We want to know:
- If fulls continuous
$$\forall n \text{ is } f \text{ continuous } ?$$

- Is $\lim_{n \to \infty} \int f_n(x) dx = \int \lim_{n \to \infty} f_n(x) dx = \int f(x) dx ?$
- Is $\lim_{n \to \infty} f'_n(x) = f'(x) ?$
 $\underbrace{E_{X::}}_{n \to \infty} f_n(x) = x^n \text{ ; } \times e[0,1]$
each fulls is continuous, but $\lim_{n \to \infty} f_n(x) = \begin{cases} 0 \text{ for } x \in [0,1] \\ 1 \text{ for } x = 1 \end{cases}$
is not continuous.

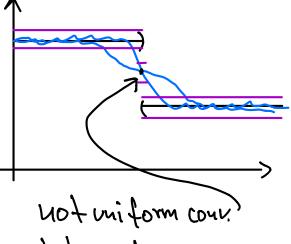
$$\frac{E \times .:}{f_{u}(x)} = \begin{cases} u^{2} \times U^{0} \leq x \leq \frac{1}{u} \\ 2u - u^{2} \times U^{0} \leq x \leq \frac{1}{u} \\ 2u - u^{2} \times U^{0} \leq x \leq \frac{1}{u} \\ 0 & 1 \leq \frac{1}{u} \leq x \leq \frac{1}{u} \\ 0 & 1 \leq \frac{1}{u} \leq x \leq \frac{1}{u} \\ 0 & 1 \leq \frac{1}{u} \leq x \leq \frac{1}{u} \\ 0 & 1 \leq \frac{1}{u} \leq x \leq \frac{1}{u} \\ 0 & 1 \leq \frac{1}{u} \leq x \leq \frac{1}{u} \\ 0 & 1 \leq \frac{1}{u} \leq x \leq \frac{1}{u} \\ 0 & 1 \leq \frac{1}{u} \leq x \leq \frac{1}{u} \\ 0 & 1 \leq \frac{1}{u} \leq x \leq \frac{1}{u} \\ 0 & 1 \leq \frac{1}{u} \leq x \leq \frac{1}{u} \\ 0 & 1 \leq \frac{1}{u} \leq x \leq \frac{1}{u} \\ 0 & 1 \leq \frac{1}{u} \leq x \leq \frac{1}{u} \\ 0 & 1 \leq \frac{1}{u} \leq \frac{1}{u} \leq \frac{1}{u} \\ 0 & 1 \leq \frac{1}{u} \leq \frac{1}{u} \leq \frac{1}{u} \\ 0 & 1 \leq \frac{1}{u} \leq \frac{1}{u} \leq \frac{1}{u} \\ 0 & 1 \leq \frac{1}{u} \leq \frac{1}{u} \leq \frac{1}{u} \\ 0 & 1 \leq \frac{1}{u} \\ 0 & 1$$

but line
$$f_{u}(x) = 0 = f(x)$$
 for all $x \in [0, 2]$
So line $\int_{u \to \infty}^{2} f_{u}(x)dx = 1 \neq \int_{0}^{2} f(x)dx = 0$
Ex.: $f_{u}(x) = \frac{1}{u} \sin(ux)$
line $f_{u}(x) = 0 = f(x)$
but $f'_{u}(x) = \frac{1}{u} \operatorname{n} \cos(ux) = \cos(ux)$ which doesn't have a limit
So have (ine $f'_{u}(x)$ doesn't exist although $f'(x) = 0$.
key concept: uniform convergence
week to convergence: $a_{1u} \xrightarrow{u \to \infty} a$ means a_{1v} becomes arbitrarily close to a
for lange u
more formally: $\frac{1}{2} E > 0$ $\frac{3}{2} N \le \frac{1}{2} V u \ge N$; $|a_{1u} - a| \le \frac{1}{2}$
for $f_{u}(x)$ this leads to pointuise conv:
 $\frac{1}{2} x \in [a_{1}b]$ $\frac{1}{2} E_{x} > 0 = N \le \frac{1}{2} N \le \frac{1}{2} N = 1$ for $(x) = f(x) = \frac{1}{2} \le \frac{1}{2} N \le \frac{1}{2} N = \frac{1}{2} + \frac{1}{2} N = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1$

a stranger notion is viifonn convergence:

VE>O BNEWS.E. UnzNaud VXE[a,b]: |fulx)-f(x)) < E





but pointmise

With that we have the following results (nedon't give proofs here):
Thm.:
$$f_{n}$$
: $[a_{1}b] \rightarrow TR$ continuous and $f_{n} \xrightarrow{n \to \infty} f$ milformly. They
 f is continuous.

Thu:
$$f_n: [a_1b] \rightarrow TR$$
 integrable and $f_n \xrightarrow{n \to \infty} f$ minformly. Then
 f is integrable and $\lim_{n \to \infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} f(x) dx.$

Thus:
$$f_n: (a_1b) \rightarrow TR$$
 continuously differentiable, $f_n \xrightarrow{n \to \infty} f$ pointnise;
 $f'_n \xrightarrow{n \to \infty} g$ uniformly for some g . They f is continuously differentiable and $\lim_{n \to \infty} f'_n(x) = f'(x)$.