4. Differential Equations
here: we consider ODES (ordinary differential equations)
these are eq. Sinvolving a foot. $y(x)$ depending on one variable x, and its derivatives
(PDE = partial differentiae eq: $\psi\left(x_{1}, \cdots, x_{4}\right)$ ire., mana y variables)
first order: $y^{\prime}(x)=f(x, y(x))$ i.e., only first derivative involved
u-th order: highest involved derivative $Y^{(u)}(x)$
So hing ODE means finding $Y(x)$ that solves ODE
for $y^{\prime}(x)=f(x, y(x))$ we specify initial condition $y\left(x_{0}\right)=y_{0}$
Ex:: $\frac{d y}{d x}=\lambda y \quad, \lambda \in \mathbb{R}$ (population growth, $\lambda>0$ growth, $\lambda<0$ decay
Solve by separation of variables:
write formally $\frac{d Y}{Y}=\lambda d X$ and integrate both sides:

$$
\begin{aligned}
& \int_{Y_{0}}^{Y} \frac{d \tilde{Y}}{\tilde{Y}}=\left.\int_{x_{0}}^{x} \lambda d \tilde{X} \Rightarrow \ln \tilde{Y}\right|_{Y_{0}} ^{Y}=\left.\lambda \tilde{x}\right|_{x_{0}} ^{x} \\
& \Rightarrow \ln Y-\ln Y_{0}=\ln \frac{Y}{Y_{0}}=\lambda\left(x-x_{0}\right) \\
& \Rightarrow Y(x)=Y_{0} e^{\lambda\left(x-x_{0}\right)}
\end{aligned}
$$

nithinitial condition $y\left(x_{0}\right)=y_{0} e^{\lambda\left(x_{0}-x_{0}\right)}=y_{0}$
altematively, we could just write

$$
\begin{aligned}
& \int \frac{d Y}{Y}=\int \lambda d x=>\ln y=\lambda x+c \\
& \Rightarrow \gamma(x)=\underbrace{e}_{A} e^{\lambda x}=A e^{\lambda x}
\end{aligned}
$$

initial condition at $x_{0}: y\left(x_{0}\right)=A e^{\lambda x_{0}} \quad\left(A=\right.$ initial cond. at $\left.x_{0}=0\right)$ express A in terms of x_{0} and $y_{0}: A=y_{0} e^{-\lambda x_{0}}$
(we cold pho g that back in and find $y(x)=y_{0} e^{\lambda\left(x-x_{0}\right)}$)
4. 1 Some Types of Integrable ODEs
integrable $=$ find explicit sol. by integration

- $Y^{\prime}(x)=f(x) g(y)$ (called separable ODE
\Rightarrow wite formally $\frac{d y}{d x}=f(x) g(y)$ as $\frac{d y}{g(y)}=f(x) d x$ and integrate

$$
\Rightarrow \text { solve } \int \frac{d y}{g(x)}=\int f(x) d x
$$

(if possible; conditions are, e.g. f and g continuous and g non-zeno)

- $Y^{\prime}(x)=f(x)$ Y , called linear homogeneous ODE
as before, $\int \frac{d y}{y}=\int f(x) d x$, so $\ln y=\int f(x) d x+c$

$$
\Longrightarrow \quad \gamma(x)=A e^{\int f(x) d x}
$$

- $y^{\prime}(x)=f(x) y+g(x)$, called linear inhomogronooss ODE
idea: wite $y(x)=u(x) \cdot v(x)$
then $\frac{d y}{d x}=\frac{d u}{d x} v+u \frac{d v}{d x}=f u \cdot v+g$
solve $\frac{d u}{d x}=f u$ and then $\frac{d v}{d x}=\frac{g}{u}$
we have $u(x)=e^{\int_{0}^{x} f(\tilde{x}) d \tilde{x}}$ and $v(x)=\int_{0}^{x} \frac{g(\tilde{x})}{u(\tilde{x})} d \tilde{x}+C$ \Rightarrow solution $Y(x)=e^{\int_{0}^{x} f(\tilde{x}) d \tilde{x}}\left(C+\int_{0}^{x} \frac{g(\tilde{x})}{u(\tilde{x})} d \tilde{x}\right)$
- $Y^{\prime}(x)=f(x) y+g(x) Y^{n}$, called Bemoulli differential eq.
again, write $f(x)=u(x) v(x)$

$$
\Rightarrow u^{\prime} v+u v^{\prime}=f_{Y}^{u v}+\underbrace{u^{n} v^{n}}_{\underbrace{}_{y^{n}}}
$$

$$
\begin{aligned}
& \Rightarrow \text { solve } u^{\prime}=f u \Rightarrow u(x)=e^{\frac{s}{x} f(\tilde{x}) d \tilde{x}} \\
& \text { and } v^{\prime}=g u^{n-1} v^{n} \Rightarrow \frac{d v}{v^{n}}=g u^{n-1} d x \\
& \Rightarrow \frac{v^{-n+1}}{-u+1}=\int_{0}^{x} g(\tilde{x}) u^{n-1}(\tilde{x}) d \tilde{x}+C \\
& \Longrightarrow \text { solution: } y(x)=u(x)\left(C+(1-u) \int_{0}^{x} g(\tilde{x}) u^{n-1}(\tilde{x}) d \tilde{x}\right)^{\frac{1}{1-n}}
\end{aligned}
$$

Ex.: logistic growth: $\frac{d y}{d x}=\lambda_{y}\left(1-\frac{y}{k}\right)$
(λ growth rate, K,e.g. environmental camping capacity)
solve by separation of vanables (see HW) or wing Bemoulli-formula:

$$
Y^{\prime}=\lambda y-\frac{\lambda}{k} Y^{2} \quad\left(f(x)=\lambda, g(x)=-\frac{\lambda}{k}\right)
$$

from before we get $u(x)=e^{\lambda x}$

$$
\begin{aligned}
& \Rightarrow y(x)=e^{\lambda x}(\tilde{c}\left.+\int_{0}^{x} \frac{\lambda}{k} e^{\lambda \tilde{x}} d \tilde{x}\right)^{-1} \\
&=\left.\frac{1}{k} e^{\lambda \tilde{x}}\right|_{0} ^{x} \\
&=\frac{e^{\lambda x}}{k}+\tilde{c}
\end{aligned}
$$

\Rightarrow solution is $Y(x)=e^{\lambda x}\left(\underset{\tilde{c}+\tilde{\bar{c}}}{c}+\frac{e^{\lambda x}}{k}\right)^{-1}$

- second order ODES: $Y^{\prime \prime}=f\left(x, y, y^{\prime}\right)$
special cases:
$\rightarrow f=f\left(x, y^{\prime}\right)$ (no y involved)
here we can just introduce new vanable $p=y^{\prime}$
then we need to solve firstorder ODE $p^{\prime}=f(x, p)$
$\longrightarrow f=f\left(y, y^{\prime}\right)$ (no x involved)
look for $p(y)$ st. $y^{\prime}=p(y)$

$$
y^{\prime \prime}=\frac{d p}{d x}=\frac{d p}{d y} \frac{d y}{d x}=p^{\prime} \cdot p \Rightarrow \text { need to solve } p^{\prime} p=f(y, p)
$$

(for p as fat. of y)
\Rightarrow this gives us $p(y)$, then we still need to solve $y^{\prime}=p(y)$
Ex:: hamonic oscillator
Newton's second law: force = mass. acceleration: $F=m a d$ position $x(t)$, velocity $\frac{d x(t)}{d t}=v(t)$, acceleration $\frac{d^{2} x(t)}{d t^{2}}=\frac{d v(t)}{d t}=a(t)$
hamonic oscillator: force $F=-k x$ (e.g. spring)
\Rightarrow ODE: $m \frac{d^{2} x}{d t^{2}}=-k x$ or $\frac{d^{2} x}{d t^{2}}=-w^{2} x \quad 1 w=\sqrt{\frac{k}{m}}$
look at $v=v(x(t))$

$$
\Rightarrow \frac{d v}{d t}=\frac{d v}{d x} \underbrace{\frac{d x}{d t}}_{v}=-u^{2} x \Rightarrow \text { solve } \frac{d v}{d x} \cdot v=-w^{2} x
$$

\Rightarrow separation of variables: $v d v=-u^{2} x d x$

$$
\begin{aligned}
& \Rightarrow \quad v(x)^{2}=-w^{2} x^{2}+C_{1} \\
& \Rightarrow \quad v(x)=\sqrt{c_{1}-u^{2} x^{2}}=\frac{d x}{d t}
\end{aligned}
$$

\Rightarrow need to solve $\frac{d x}{d t}=\sqrt{c_{1}-w^{2} x^{2}}$

$$
\begin{aligned}
& \Rightarrow \int \frac{d x}{\sqrt{c_{1}-w^{2} x^{2}}}=\int d t \\
& \Rightarrow \frac{1}{\sqrt{c_{1}}} \int \frac{d x}{\sqrt{1-\frac{w^{2}}{c_{1} x^{2}}}} \frac{\frac{\omega x}{\sqrt{c_{1}}}=y}{=} \frac{1}{\sqrt{c_{1}}} \frac{\sqrt{c_{1}}}{\omega} \int \frac{d y}{\sqrt{1-y^{2}}}=\frac{1}{w} \int \frac{d y}{\sqrt{1-y^{2}}} \\
& \\
& =\frac{1}{w} \arcsin y=\frac{1}{w} \arcsin \left(\frac{w}{\sqrt{c_{1}}} x\right) \\
& \Rightarrow \frac{1}{w} \arcsin \left(\frac{w}{\sqrt{c_{1}}} x\right)=t+c_{2} \\
& \Rightarrow \text { solution } x(t)=\frac{\sqrt{c_{1}}}{w} \sin \left(\omega t+\omega c_{2}\right)
\end{aligned}
$$

or nicer: $x(t)=A_{0} \sin (\omega t+\varphi)$
amplitude \longrightarrow initial place
initial position at $t=0: x(0)=A_{0} \sin \varphi=x_{0}$
initial velocity at $t=0: v(0)=A_{0} w \cos \varphi=v_{0}$

