Linear Algebra

Homework 1

Due on September 17, 2018

Problem 1 [5 points]

Let $W \subset V$ be a subspace. Show that $(V \backslash W) \cup\{0\}$ is a subspace of V if and only if $W=\{0\}$ or $W=V$.

Problem 2 [5 points]

(a) Let V be a vector space. Prove that for any subset $S \subset V, \operatorname{span}(S)$ is a subspace.
(b) Prove that the span of S is equal to the intersection of all subspaces of V that contain S.

Problem 3 [5 points]

Consider the space of real $n \times n$ matrices. Which of the following matrices form a subspace? Give a brief and concise proof for each case.
(a) orthogonal matrices
(b) invertible matrices
(c) matrices with trace zero
(d) symmetric matrices
(e) antisymmetric matrices

Problem 4 [5 points]

Prove that \mathbb{R} as a vector space over \mathbb{Q} is infinite dimensional.

