Jacobs University Fall 2018

Linear Algebra

Homework 1

Due on September 17, 2018

Problem 1 [5 points]

Let $W \subset V$ be a subspace. Show that $(V \setminus W) \cup \{0\}$ is a subspace of V if and only if $W = \{0\}$ or W = V.

Problem 2 [5 points]

- (a) Let V be a vector space. Prove that for any subset $S \subset V$, span(S) is a subspace.
- (b) Prove that the span of S is equal to the intersection of all subspaces of V that contain S.

Problem 3 [5 points]

Consider the space of real $n \times n$ matrices. Which of the following matrices form a subspace? Give a brief and concise proof for each case.

- (a) orthogonal matrices
- (b) invertible matrices
- (c) matrices with trace zero
- (d) symmetric matrices
- (e) antisymmetric matrices

Problem 4 [5 points]

Prove that \mathbb{R} as a vector space over \mathbb{Q} is infinite dimensional.