Linear Algebra

Homework 3

Due on October 1, 2018

Problem 1 [4 points]

On the last homework sheet we considered a function that is homogeneous (f(cx) = cf(x)) but not additive (additive meaning that f(x + y) = f(x) + f(y)). Now we are looking for additive but non-homogeneous functions.

- (a) Give an example of an additive function $f : \mathbb{C} \to \mathbb{C}$ (\mathbb{C} is regarded as vector space over \mathbb{C}) which is not linear.
- (b) Give an example of a non-linear but additive function $g : \mathbb{R} \to \mathbb{R}$, where \mathbb{R} is regarded as vector space over \mathbb{Q} .

Problem 2 [3 points]

Given $f \in \mathcal{L}(V, W)$ for finite-dimensional vector spaces V, W and its matrix in chosen bases of V and W, what is the matrix of the dual map in the dual bases?

Problem 3 [5 points]

Prove the following properties of the dual map, for all $f, g \in \mathcal{L}(V, W)$, $h \in \mathcal{L}(W, X)$, $c \in F$, where all vector spaces V, W, X are finite dimensional.

(a) $(f+g)^* = f^* + g^*$,

(b)
$$(cf)^* = cf^*$$
,

- (c) $(hf)^* = f^*h^*$,
- (d) $1^* = 1, 0^* = 0,$
- (e) if V^{**} and W^{**} are canonically identified with V and W (as discussed in class), then $f^{**}: V^{**} \to W^{**}$ is canonically identified with $f: V \to W$.

Problem 4 [4 points]

For $f \in \mathcal{L}(V, W)$, prove that ker f and im f are indeed subspaces.

Problem 5 [4 points]

Let us consider the Pauli matrices

$$\sigma_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Prove the following properties:

- (a) $[\sigma_{\ell}, \sigma_m] = 2i\varepsilon_{\ell m n}\sigma_n$, where ℓ, m, n can be 1, 2, 3, $\varepsilon_{\ell m n}$ is 1 for even permutations and -1 for odd ones, and [A, B] := AB BA,
- (b) $\sigma_\ell \sigma_m + \sigma_m \sigma_\ell = 2\delta_{\ell m} \sigma_0$,
- (c) the matrices $i\sigma_1$, $i\sigma_2$, $i\sigma_3$ form a basis of the space of complex 2×2 matrices with trace zero, and the matrices $\sigma_0, i\sigma_1, i\sigma_2, i\sigma_3$ form a basis of the space of complex 2×2 matrices.