Linear Algebra

Homework 3

Due on October 1, 2018

Problem 1 [4 points]

On the last homework sheet we considered a function that is homogeneous $(f(c x)=$ $c f(x)$) but not additive (additive meaning that $f(x+y)=f(x)+f(y))$. Now we are looking for additive but non-homogeneous functions.
(a) Give an example of an additive function $f: \mathbb{C} \rightarrow \mathbb{C}(\mathbb{C}$ is regarded as vector space over \mathbb{C}) which is not linear.
(b) Give an example of a non-linear but additive function $g: \mathbb{R} \rightarrow \mathbb{R}$, where \mathbb{R} is regarded as vector space over \mathbb{Q}.

Problem 2 [3 points]

Given $f \in \mathcal{L}(V, W)$ for finite-dimensional vector spaces V, W and its matrix in chosen bases of V and W, what is the matrix of the dual map in the dual bases?

Problem 3 [5 points]

Prove the following properties of the dual map, for all $f, g \in \mathcal{L}(V, W), h \in \mathcal{L}(W, X)$, $c \in F$, where all vector spaces V, W, X are finite dimensional.
(a) $(f+g)^{*}=f^{*}+g^{*}$,
(b) $(c f)^{*}=c f^{*}$,
(c) $(h f)^{*}=f^{*} h^{*}$,
(d) $1^{*}=1,0^{*}=0$,
(e) if $V^{* *}$ and $W^{* *}$ are canonically identified with V and W (as discussed in class), then $f^{* *}: V^{* *} \rightarrow W^{* *}$ is canonically identified with $f: V \rightarrow W$.

Problem 4 [4 points]

For $f \in \mathcal{L}(V, W)$, prove that $\operatorname{ker} f$ and $\operatorname{im} f$ are indeed subspaces.

Problem 5 [4 points]

Let us consider the Pauli matrices

$$
\sigma_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Prove the following properties:
(a) $\left[\sigma_{\ell}, \sigma_{m}\right]=2 i \varepsilon_{\ell m n} \sigma_{n}$, where ℓ, m, n can be $1,2,3, \varepsilon_{\ell m n}$ is 1 for even permutations and -1 for odd ones, and $[A, B]:=A B-B A$,
(b) $\sigma_{\ell} \sigma_{m}+\sigma_{m} \sigma_{\ell}=2 \delta_{\ell m} \sigma_{0}$,
(c) the matrices $i \sigma_{1}, i \sigma_{2}, i \sigma_{3}$ form a basis of the space of complex 2×2 matrices with trace zero, and the matrices $\sigma_{0}, i \sigma_{1}, i \sigma_{2}, i \sigma_{3}$ form a basis of the space of complex 2×2 matrices.

