Linear Algebra

Homework 4

Due on October 8, 2018

Problem 1 [2 points]

Let V_{1}, V_{2}, W be subspaces of a vector space V. Either prove or give a counterexample to the following assertions.
(a) If $V_{1}+W=V_{2}+W$ then $V_{1}=V_{2}$.
(b) If $V=V_{1} \oplus W$ and $V=V_{2} \oplus W$ then $V_{1}=V_{2}$.

Problem 2 [6 points]

Let $V_{1}, \ldots, V_{n} \subset V$ be subspaces of the vector space V with $\sum_{i=1}^{n} V_{i}=V$. Prove that the following three statements are equivalent:
(a)

$$
V=\bigoplus_{i=1}^{n} V_{i} \text { (i.e., } V \text { is actually a direct sum of the } V_{i} \text {), }
$$

(b)

$$
V_{j} \cap\left(\sum_{\substack{i=1 \\ i \neq j}}^{n} V_{i}\right)=\{0\},
$$

(c)

$$
\sum_{i=1}^{n} \operatorname{dim} V_{i}=\operatorname{dim} V
$$

Problem 3 [4 points]

Let V be a vector space and let $p_{1}, \ldots, p_{n} \in \mathcal{L}(V)$ be projectors with $\sum_{i=1}^{n} p_{i}=\mathrm{id}$ and $p_{i} p_{j}=0$ for all $i \neq j$. Prove that then

$$
V=\bigoplus_{i=1}^{n} \operatorname{im}\left(p_{i}\right)
$$

Problem 4 [4 points]

Let V be a vector space and let $p \in \mathcal{L}(V)$ be a projector. Prove that $V=\operatorname{ker}(p) \oplus \operatorname{im}(p)$. Show also that any projector can be represented in an appropriate basis by the matrix

$$
A_{p}=\left(\begin{array}{cc}
E_{r} & 0 \\
0 & 0
\end{array}\right),
$$

where E_{r} is the $r \times r$ unit matrix with $r=\operatorname{dimim}(p)$, and the 0 's stand for $(n-r) \times(n-r)$ matrices with 0 entries $(n=\operatorname{dim} V)$.

Problem 5 [4 points]

Let $\left(V_{1}, V_{2}, V_{3}\right)$ be an ordered triple of pairwise distinct planes in \mathbb{R}^{3}. Prove that there exist two possible types of relative arrangements of such triples, characterized by $\operatorname{dim} V_{1} \cap$ $V_{2} \cap V_{3}$. Which type should be regarded as the general one?

