Linear Algebra

Homework 5

Due on October 15, 2018

Problem 1 [2 points]

Let $M, N \subset L$ be subspaces. Prove that the mapping

$$
(M+N) / N \rightarrow M /(M \cap N), m+n+N \mapsto m+M \cap N
$$

is a linear isomorphism.

Problem 2 [2 points]

Prove that the canonical mapping

$$
M \rightarrow(M \oplus N) / N, m \mapsto m+N
$$

is an isomorphism.

Problem 3 [10 points]

Let M be a subspace of L.
(a) Prove that $\operatorname{dim} M+\operatorname{dim} M^{\perp}=\operatorname{dim} L$.
(b) Prove that $\left(M^{\perp}\right)^{\perp}$ as a subspace of $L^{* *}$ is canonically isomorphic to M (under the canonical isomorphism that identifies elements of $L^{* *}$ with elements of L).
(c) In class we discussed a big diagram claiming many isomorphisms. Prove all of these! Half a point for each. (Hint: Each one follows quite easily from applying the lemmas discussed in class and part (a) and (b).)

Problem 4 [3 points]

For $f \in \mathcal{L}(L, M)$, prove that $f(x)=y$ has a solution if and only if y is orthogonal to the kernel of the dual map $f^{*}: M^{*} \rightarrow L^{*}$.

Problem 5 [3 points]

Prove that the column rank of a matrix (the maximal number of linearly independent column vectors) equals its row rank (the maximal number of linearly independent row vectors). Proceed by using that if a map $f: L \rightarrow M$ is represented in some basis by a matrix A, then the dual map in the dual basis is represented by the transposed matrix A^{t}.

