Linear Algebra

Homework 6

Due on November 5, 2018

Problem 1 [6 points]

Let $f \in \mathcal{L}(L)$ be diagonalizable with simple spectrum.
(a) Prove that any operator $g \in \mathcal{L}(L)$ such that $g f=f g$ can be represented in the form of a polynomial of f.
(b) Prove that the dimension of the space of such operators g equals the dimension of L.
(c) Are (a) and (b) still true if the spectrum of f is not simple?

Problem 2 [6 points]

Let $f, g \in \mathcal{L}(L)$ with $\operatorname{dim}(L)=n$, where L is a vector space over a field F with characteristic zero (meaning that no matter how often we add up the 1 of the field we will never get to the 0 of the field). Assume that $f^{n}=0, \operatorname{dim} \operatorname{ker}(f)=1$, and $g f-f g=f$. Prove that the eigenvalues of g have the form $a, a-1, a-2, \ldots, a-(n-1)$ for some $a \in F$.

Problem 3 [2 points]

Suppose $f, g \in \mathcal{L}(L)$ with $\operatorname{dim}(L)=n$, and L is a vector space over \mathbb{C}. Let all eigenvalues and eigenvectors of f and g coincide. Does this imply that $f=g$?

Problem 4 [3 points]

Let $J_{r}(\lambda)$ be the $r \times r$ Jordan block with λ on the diagonal. Find a general formula for $J_{r}(\lambda)^{n}$ for any $n \in \mathbb{N}$. Explicitly write down what the matrix $J_{3}(\lambda)^{n}$ is. Show that the characteristic polynomial and minimal polynomial of $J_{r}(\lambda)$ are the same. Also, find a counter example of some matrix where the characteristic polynomial is not equal to the minimal polynomial.

Problem 5 [3 points]

Find the eigenvalues and generalized eigenvectors of $f(x, y)=(-y, x)$, where $f \in \mathcal{L}\left(\mathbb{C}^{2}\right)$.

Finally: A Bonus Problem! [3 extra points]

Prove that for an arbitrary complex matrix one can introduce infinitesimal changes of the matrix elements that make the matrix diagonalizable.

