Linear Algebra

Homework 7

Due on November 12, 2018

Problem 1 [4 points]

For the following two matrices

$$
A=\left(\begin{array}{ccc}
2 & 0 & 0 \\
1 & 2 & 1 \\
-1 & 0 & 1
\end{array}\right), \quad B=\left(\begin{array}{ccc}
6 & 3 & -8 \\
0 & -2 & 0 \\
1 & 0 & -3
\end{array}\right),
$$

find the eigenvalues, their multiplicities, the corresponding eigenspaces or generalized eigenspaces and state whether they are diagonalizable or not. If a matrix is not diagonalizable, write down the Jordan normal form (only the matrix is enough).

Problem 2 [3 points]

Solve the linear system of equations

$$
y^{\prime}(t)=J_{n}(\lambda) y(t),
$$

where $y(t) \in \mathbb{R}^{n}$, and $J_{n}(\lambda)$ is a Jordan block with $\lambda \in \mathbb{R}$ on the diagonal. Hint: One could do this by making a guess for the solution and then prove it by induction.

Problem 3 [2 points]

Consider the linear system of equations

$$
y^{\prime}(t)=A y(t)
$$

where $y(t) \in \mathbb{R}^{n}$ and A is any complex $n \times n$ matrix. Describe how to solve this equation by bringing A into Jordan normal form.

Problem 4 [6 points]

Let L be a finite dimensional complex vector space and $g \in \mathcal{L}(L)$. An operator $f \in \mathcal{L}(L)$ such that $f^{2}=g$ is called a square root of g.
(a) Suppose g is nilpotent. Prove that then $1+g$ has a square root. Hint: Make a guess of what the square root should be from the Taylor series expansion for $\sqrt{1+x}$.
(b) Now suppose that g is invertible. Prove that then g has a square root. Hint: Start with the abstract Jordan decomposition and consider $\left.g\right|_{G\left(\lambda_{i}\right)}$.

Problem 5 [5 points]

Let L be a real or complex vector space.
(a) Recall or look up the definition of a norm $\|\cdot\|$ on L. Let us next consider any norm for linear operators $f: L \rightarrow L$. Let $P(t)=\sum_{i=0}^{\infty} c_{i} t^{i}$ have non-zero radius of convergence. We set $P(f)=\sum_{i=0}^{\infty} c_{i} f^{i}$ if the series $\sum_{i=0}^{\infty} c_{i}\left\|f^{i}\right\|$ converges (in \mathbb{R}).
(b) Let $f \in \mathcal{L}(L)$ be such that $\|f\|<1$. Compute $\sum_{i=0}^{\infty} f^{i}$ and thus prove that $1-f$ is invertible.
(c) Let $f, g \in \mathcal{L}(L)$. We define $e^{f}=\sum_{i=0}^{\infty} \frac{f^{i}}{i!}$. Prove that when $f g=g f$ (i.e., f and g commute), then $e^{f+g}=e^{f} e^{g}$. Hint: Cauchy product.

