Linear Algebra

Homework 8

Due on November 19, 2018

Problem 1 [5 points]

Let L and M be finite dimensional linear spaces over the field F and let $g: L \times M \rightarrow F$ be a bilinear mapping. We shall call the set

$$
L_{0}=\{\ell \in L: g(\ell, m)=0 \text { for all } m \in M\}
$$

the left kernel of g and the set

$$
M_{0}=\{m \in M: g(\ell, m)=0 \text { for all } \ell \in L\}
$$

the right kernel of g. Prove the following assertions:
(a) $\operatorname{dim} L / L_{0}=\operatorname{dim} M / M_{0}$.
(b) g induces the bilinear mapping $g^{\prime}: L / L_{0} \times M / M_{0} \rightarrow F, g^{\prime}\left(\ell+L_{0}, m+M_{0}\right)=g(\ell, m)$, for which the left and right kernels are zero.

Problem 2 [3 points]

Prove that any bilinear inner product $g: L \times L \rightarrow F$ (over the field F with characteristic $\neq 2$) can be uniquely decomposed into a sum of symmetric and antisymmetric inner products.

Problem 3 [8 points]

Let $g: L \times L \rightarrow F$ be a bilinear inner product such that the property of orthogonality of a pair of vectors is symmetric, i.e., from $g\left(\ell_{1}, \ell_{2}\right)=0$ it follows that $g\left(\ell_{2}, \ell_{1}\right)=0$. Prove that then g is either symmetric or antisymmetric.
You can proceed in the following way:
(a) Let $\ell, m, n \in L$. Prove that $g(\ell, g(\ell, n) m-g(\ell, m) n)=0$. Using the symmetry of orthogonality, deduce that $g(\ell, n) g(m, \ell)=g(n, \ell) g(\ell, m)$.
(b) Set $n=\ell$ and deduce that if $g(\ell, m) \neq g(m, \ell)$ then $g(\ell, \ell)=0$.
(c) Show that $g(n, n)=0$ for any vector $n \in L$ if g is non-symmetric. To this end, choose ℓ, m with $g(\ell, m) \neq g(m, \ell)$ and study separately the cases $g(\ell, n) \neq g(n, \ell)$ and $g(\ell, n)=g(n, \ell)$.
(d) Show that if $g(n, n)=0$ for all $n \in L$ then g is antisymmetric.

Problem 4 [4 points]

Let (L, g) be an n-dimensional linear space with a non-degenerate inner product. Prove that the set of vectors $\left\{e_{1}, \ldots, e_{n}\right\}$ in L is linearly independent if and only if the matrix $\left(g\left(e_{i}, e_{j}\right)\right)_{i, j}$ is non-singular.

Bonus Problem [3 extra points]

Give the classification of one-dimensional orthogonal spaces over a finite field F with characteristic $\neq 2$ by showing that $F^{*} /\left(F^{*}\right)^{2}$ is the cyclical group of order 2. (Hint: Show that the kernel of the homomorphism $F^{*} \rightarrow F^{*}: x \mapsto x^{2}$ is of order 2, using the fact that the number of roots of any polynomial over a field does not exceed the degree of the polynomial.)

