# Linear Algebra 

Homework 10

Due on December 3, 2018

## Problem 1 [3 points]

Consider again the matrix

$$
\left(\begin{array}{rrr}
3 & -2 & 0 \\
-2 & 2 & -2 \\
0 & -2 & 1
\end{array}\right)
$$

from last week's homework sheet as the Gram matrix of a symmetric bilinear form on a real vector space in some basis. Write down the corresponding quadratic form and apply the reduction scheme discussed in class to reduce it to a sum of squares.

## Problem 2 [3 points]

Let $L$ be the real vector space of polynomials of degree 3 or less with bilinear form

$$
g\left(f_{1}, f_{2}\right)=\int_{-1}^{1} f_{1}(x) f_{2}(x) d x
$$

What is the Gram matrix of $g$ in the basis $\left\{1, x, x^{2}, x^{3}\right\}$ ? Find an orthonormal basis of $L$. (With the Gram-Schmidt orthogonalization these are the first few Legendre polynomials.)

## Problem 3 [6 points]

We consider the bilinear form

$$
g\left(f_{1}, f_{2}\right)=\int_{-\infty}^{\infty} f_{1}(x) f_{2}(x) G(x) d x
$$

with $G(x)=e^{-x^{2}}$. Then the result of the Gram-Schmidt orthogonalization applied to $\left\{1, x, x^{2}, \ldots\right\}$ are the Hermite polynomials $H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}} e^{-x^{2}}$.
(a) Prove their normalization $g\left(H_{n}, H_{m}\right)=2^{n} n!\sqrt{\pi} \delta_{n m}$.
(b) The Hermite functions are defined as

$$
\psi_{n}(x)=(-1)^{n}\left(2^{n} n!\sqrt{\pi}\right)^{-1 / 2} e^{x^{2} / 2} \frac{d^{n}}{d x^{n}} e^{-x^{2}}
$$

Show that they are orthonormal with respect to the bilinear form

$$
\widetilde{g}\left(f_{1}, f_{2}\right)=\int_{-\infty}^{\infty} f_{1}(x) f_{2}(x) d x
$$

(c) Show that the Hermite functions satisfy the differential equation for the quantum harmonic oscillator (the time-independent Schrödinger equation), i.e.,

$$
\left(\frac{d^{2}}{d x^{2}}+2 n+1-x^{2}\right) \psi_{n}(x)=0
$$

## Problem 4 [2 points]

Let $L$ be a vector space over $\mathbb{R}$. Prove the following two statements which illustrate the connection between norms and scalar products.
(a) If a norm $\|\cdot\|$ on $L$ is defined via a scalar product $(\|\cdot\|=\sqrt{\langle\cdot \cdot \cdot\rangle})$ then it satisfies the parallelogram identity

$$
\begin{equation*}
\left\|\ell_{1}+\ell_{2}\right\|^{2}+\left\|\ell_{1}-\ell_{2}\right\|^{2}=2\left\|\ell_{1}\right\|^{2}+2\left\|\ell_{2}\right\|^{2} . \tag{1}
\end{equation*}
$$

(b) [Bonus, 3 points] A bit more challenging is the converse statement. Suppose for some norm $\|\cdot\|$ on $L$ the parallelogram identity holds. Then there is a scalar product $\langle\ell, \ell\rangle$ such that $\|\cdot\|=\sqrt{\langle\ell, \ell\rangle}$.

## Problem 5 [6 points]

Let $L$ be a vector space over $\mathbb{R}$. We show that not every metric is defined from a norm, and not every norm from a scalar product.
(a) Let $L=\mathbb{R}^{n}$ with $n \geq 2$. Prove that $\|\ell\|:=\max \left\{\left|x_{i}\right|: i=1, \ldots, n\right\}$ is a norm, but that there is no scalar product with $\|\ell\|=\sqrt{\langle\ell, \ell\rangle}$.
(b) Let $L$ be the vector space of real continuous functions. For any $k \in \mathbb{N}$, define $\|f\|_{k}:=\max \{|f(x)|: x \in[-k, k]\}$. Prove that

$$
d(f, g):=\sum_{k=0}^{\infty} 2^{-k} \frac{\|f-g\|_{k}}{1+\|f-g\|_{k}}
$$

is a metric on $L$, but there is no norm $\|\cdot\|$ such that $\|f-g\|=d(f, g)$.

