Linear Algebra
Organization:

- syllabus, website
- weekly homework sheets (Wed, starting Sep. 12)
\rightarrow riles as usual (syllabus)
G due on Wed. before class (mai (box)
$\rightarrow 2$ worst sheets disregarded for grading
- weekly tetonals (doodle poll)
- TA: Khaderja Afzal
- my and her office hours: TBA
- 2 exams:- midterms (Wed, Oc) 24 , after Reading Days)
- final (in final exam period (Dec.)
- grades: 20% HF

30\% midterm
50% final
If final grade $>$ midterm grade $=>$ midterm grade $:=$ final grade

- Topics: - vector spaces and Linear operators (linear spaces and linear mappings)
\rightarrow subspaces, basis, dimension, dual space, quotient spaces
\longrightarrow fundamental spaces, eigenvalues, eigenvectors, characteristic polynomial 1 Jordan decomposition, (de)complesification
- geometry: inner products or bilinear/sesquilinear form \rightarrow Euclidean, Hermitian, Symplectic
- books: Kostrikin, Mania; Axles
I. Vector Spaces and Linear Operators
I. 1 Vector Spaces
motivation/origin: vectors in $\mathbb{R}^{2}, \mathbb{R}^{3}$ (forces, trajectories, EM fields...)

\rightarrow addition (comitative, associative, zero vector, inverse)
\rightarrow scaling or scalar multiplication (identity, distributive)
now: make both vectors and scalars abstract
Definition: A field F is a set with addition and multiplication both of which are associative, commutative, have identities andimiveres, and we distributive.
$\left.\begin{array}{l}\text { Examples:. } \\ \cdot \mathbb{T}(\text { (real numbers) } \\ \cdot \mathbb{C} \text { (complex numbers) }\end{array}\right\}$ mos it often wed
- Q (rational numbers)

Def.: A vector space V over a field F is a set with the two operations addition ((t) and multiplication (\cdot) by an elements in F (scalars) that satisfies the following axioms:
(-f oraddition:) 1) Associativity: $\left(v_{1}+v_{2}\right)+v_{3}=v_{1}+\left(v_{2}+v_{3}\right)$

$$
\forall v_{1}, v_{2}, v_{3} \in V
$$

2) Existence of au identity called O (or "zerovector" or "neutral element"): $v_{1}+0=v_{1} \quad \forall v_{1} \in V$
3) Existence of an inverse: for any $V_{1} \in \vee \forall$ inverse $-v_{1}$, such that $v_{1}+\left(-v_{1}\right)=0$
4) Commutativity: $v_{1}+v_{2}=v_{2}+v_{1} \quad \forall v_{1}, v_{2} \in V$
(note: 11-4) are the properties of an abelian group) (- for seder multiplication:)
5) Associativity: $(\alpha \beta) \cdot v_{1}=\alpha \cdot\left(\beta v_{1}\right)$

$$
\forall \alpha, \beta \in F, v, \in V
$$

b) Distributivity for scalars: $\alpha \cdot\left(v_{1}+v_{2}\right)=\alpha \cdot v_{1}+\alpha \cdot v_{2}$

$$
\forall x \in F, v_{1}, v_{2} \in V
$$

7) Distributivity forvectors: $(\alpha+\beta) \cdot v_{1}=\alpha \cdot v_{1}+\beta \cdot v_{1}$

$$
\forall \alpha_{1} \beta \in F_{1} v_{1} \in V
$$

8) Multiplicative identity $1 \in F: 1 \cdot v_{1}=v_{1}, \forall v_{1}$ e V

Remarks:

- 0 identity is unique

Proof: suppose $\exists O_{1}$ and O_{2}. Then $O_{1}=O_{1}+O_{2}=O_{2}+O_{1}=O_{2}$.

$$
-0 \cdot \alpha=0 \quad \forall \alpha \in F, 0 \cdot v_{1}=0 \quad \forall v_{1} \in V
$$

Prof: $0 \cdot v_{1}+0 \cdot v_{1}=(0+0) \cdot v_{1}=0 \cdot v_{1}$.

- inverse is unique, $-v_{1}=(-1) \cdot v_{1}$

Proof: $v_{1}+(-1) v_{1}=1 \cdot v_{1}+(-1) \cdot v_{1}=(1+(-1)) \cdot v_{1}=0 \cdot v_{1}=0$.

$$
-\alpha \cdot v_{1}=0 \Rightarrow \alpha=0 \text { or } v_{1}=0
$$

Proof: Say, $\alpha \neq 0$. Then $0=\alpha^{-1}\left(\alpha \cdot v_{1}\right)=\left(\alpha^{-1} \alpha\right) \cdot v_{1}=\eta \cdot v_{1}=v_{1}$.

Examples:
$-\mathbb{R}^{u}, \alpha \in \mathbb{R}^{u}$ then $a=\left(\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{n}\end{array}\right), a_{i} \in \mathbb{R}$ addition: $a+b=\left(\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right)+\left(\begin{array}{c}b_{1} \\ \vdots \\ b_{n}\end{array}\right)=\left(\begin{array}{c}a_{1}+b_{1} \\ \vdots \\ a_{n}+b_{n}\end{array}\right)$
scalar multi.: $\alpha \cdot\left(\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right)=\left(\begin{array}{c}\alpha \cdot a_{1} \\ \vdots \\ \alpha \cdot a_{n}\end{array}\right)$
(note: at this point we don't have lengths, angle, areas, volumes etc. i comes later with inner products)
$-\mathbb{C}^{n}$: Square with $a_{i} \in \mathbb{C}$
$-\operatorname{Mat}_{n \times m}(\mathbb{R})=$ space of $n \times m$ real matrices

- space of functions in $\mathbb{R} ; f: \mathbb{R} \rightarrow \mathbb{R}, g: \mathbb{R} \rightarrow \mathbb{R}, \alpha, x \in \mathbb{R}$
add: $(f+g)(x)=f(x)+g(x)$
scalar molt:: $(\alpha f)(x)=\alpha \cdot f(x)$
- space of fat. $X \rightarrow \mathbb{R}$ for any set X
- space of all linear fot.s $V \rightarrow F$
-polynomials, e.g., $P_{0}\left(\leq n(\mathbb{R} \rightarrow \mathbb{R}), P_{0}\left(\leq n(\mathbb{C} \rightarrow \mathbb{C}), P_{0}((\mathbb{R})\right.\right.$

$$
\begin{aligned}
& l_{x} \mapsto a_{n} x^{n}+q_{n+1} x^{n-1}+\ldots+q_{1} x+q_{0} \\
& \text { for } a_{0}, \ldots, a_{n} \in \mathbb{R}
\end{aligned}
$$

I. 2 Subspace

Ex::-lines or planes in \mathbb{R}^{3}

$$
\text { - } \operatorname{Po}_{\underline{s}_{n}}(\mathbb{R}) \subset \operatorname{Pol}(\mathbb{R}) \subset C^{\infty} c \ldots \subset c^{2} \subset c^{1} \subset D \subset \subset \subset \mp_{k}(\mathbb{R})
$$ differentiable forts

Def.: A subset $W \subset V$ is called a subspace if W is a vector space w.r.t. the induced operations (i.e., the same addition and scalar molt. as in V).

