Subspaces:
Session, Sep. 10,2018 motivated by lines, planes (thanh the origin) in \mathbb{R}^{3} and results from Analysis (egg .sums of cont. fat, sure cont.)

Def.: A scboset $W \subset V$ is called a subspace if W is a vector space w.r.t. the induced operations (i.e., the same addition and scalar molt. as in V).
non-empty subset $W \subset V$ is a subspace
$\langle\equiv W$ is closed w.r.t. the induced operations
Proof: " \Rightarrow "clear

$$
\begin{aligned}
& " \neq " \cdot w_{1} \in W=\underset{\text { scalar }}{0} 0 \cdot w_{1}=0 \in W \\
& \cdot w_{1} \in W \Longrightarrow(-1) w_{1}=-w_{1} \in W
\end{aligned}
$$

- rest follows bc. it holds on V
note: - neutral element O_{v} of V equals neutral element O_{n} of W
Proof: $w \in W=>w+O_{w}=w=w+O_{v}$

$$
\begin{array}{llrl}
\Leftrightarrow & 0_{v}+0_{w} & =0_{v}+0_{v} \\
\Leftrightarrow & 0_{w} & =0_{v}
\end{array}
$$

- Get we, then inv. $-w_{w}$ in W equals inv. $-w_{v}$ in V

Proof: $w-w_{w}=0=w-w_{v}$

$$
\begin{aligned}
\Leftrightarrow w-w_{w}-w_{v} & =w-w_{v}-w_{v} \\
-w_{w} & =-w_{v}
\end{aligned}
$$

Ex.: - $\left\{\left(0, x_{2}, x_{3}\right) \in \mathbb{R}^{3}\right\}$ is a subspace

- $\left\{\left(x_{1}, x_{21}, x_{3}\right) \in \mathbb{R}^{3}: x_{2}=x_{1}+3 x_{3}-5\right\}$ is not a subspace - space of cont. fat., is a sibspace of space of all fot.s
I. 3 Span, Basis, Dimension motivation:
- two vectors $v_{11} v_{2} \in \mathbb{R}^{3}$ with $v_{1} \neq c \cdot v_{2}$ for $c \in \mathbb{R}$ span a (minus) plane through O
\rightarrow then all vectors in plane can be written as $w=c_{1} v_{1}+c_{2} v_{2}$ $\left(c_{1} c_{2} \in \mathbb{R}\right)$
- all planes through 0 can be written as $c_{1} x+c_{2} y+c_{3} z=0$ for non-zero c_{1}, c_{2}, c_{3}
Def.: let V be a vectorspace over some field F.
Then $c_{1} v_{1}+\ldots+c_{k} v_{k}=\sum_{i=1}^{k} c_{i} v_{i}$ for $c_{i} \in F, v_{i} \in V_{i}=l_{1} \ldots, k$ is called a linear combination.

Deft.: For any subset $S \subset V$, we def.
$\operatorname{span}(S)=\left\{\right.$ all linear combinations $\sum_{i=1}^{k} c_{i} s_{i}$ with $c_{i} \in F, s_{i} \in S$,

$$
\left.i=k_{c} \ldots, k, k \in \mathbb{N}\right\}
$$

note: - for any subset) $S \subset V$, span (S) is a subspace (HW)

- $\operatorname{span}(S)$ is the smallest scolspace, ie., span $(S)=\bigcap_{\substack{W \\ \text { covscs.spoce } \\ \text { od }}} W(H W)$
- if $W C V$ is a subspace, then $\operatorname{span}(w)=W$.

Dat.: A subset $S \subset V$, s.t. $\operatorname{span}(s)=V$ is called a generating set (or, a spanning set).

Dea.: A minimal generating set is called a basis of V (minicisal means no element can be removed).

Dent.: A subset $S c V$ is called linearly ind pendent if $\sum_{i=1}^{k} c_{i} s_{i}=0$ for $c_{i} \in F, s_{i} \in S$ always implies $c_{i}=0 \forall i=l_{1 \ldots k}$

Otherwise it's called linearly dependent.

Theorem: Let V be a vector space over a field F_{1} and $E \subset V$ a subset. Then the following are equivalent:

1) E is a basis of V
2) E is a maximal linearly independent set
3) every vel V can uniquely be written as $V=\sum_{i=1}^{k} c_{i} e_{i}$ for $c_{i} \in F, e_{i} \in E_{1} i=1, \ldots, k, k \in \mathbb{N}$

Proof:
"1) $=221^{\prime \prime}$: We suppose E is a basis of V.
Assume E is linearly dependent. Then $\exists c_{11 \ldots, c_{k} \in F_{1} e_{1} \ldots, e_{k} \in E_{1},}$ s.t. $\sum_{i=1}^{k} c_{i} e_{i}=0$ and $c_{1} \neq 0$.
$\Longrightarrow e_{1}=-\sum_{i=2}^{k} \frac{c_{i}}{c_{1}} e_{i} \Longrightarrow E \backslash\left\{e_{1}\right\}$ is a generating set
\Rightarrow contradiction to E is a basis (a minimal generating set)
$\Longrightarrow E$ is linearly independent
Maximal? Choose $v \notin E$, can $E \cup\{v\}$ be linearly indap.?
Since E is generating, $v=\sum_{i=1}^{k} c_{i} e_{i}$ for some $c_{i} \in F, e_{i} \in E, i=\left.\right|_{1} \ldots, k, k \in \mathbb{N}$ $\Longrightarrow \quad 1 \cdot v+\sum_{i=1}^{k_{1}}\left(-c_{i}\right) e_{i}=0 \Rightarrow E v\{v\}$ is lin. dep.
$\Longrightarrow E$ is maximal Lin. indep. set
$" 21=23)^{\prime \prime}$: We suppose E is max. lir. indep. set
choose $v \in V$, if $v \in E$ we are done, so suppose $v \notin E$.
Then $E \cup\{v\}$ is $l_{i n}$, dep, i.e., $\exists c_{1} c_{1}, c_{21 \ldots, 1} c_{k} \in F$ and $e_{11 \ldots, e_{k} \in E \text {, }}$ s.t. $C \cdot v+\sum_{i=1}^{k} c_{i} e_{i}=0$ and not all $c_{i}=0$.
$\Rightarrow v=-\sum_{i=1}^{k} \frac{c_{i}}{c} e_{i} \quad(c \neq 0$, otherwise E would nt be lin. indep.)
Whiquauess?
suppose $\exists e_{1 \ldots, \ldots} e_{k} \in E_{1} c_{1 \ldots, \ldots}, c_{k} \in F_{1} d_{11 \ldots,} d_{k} \in F_{1}$ such that

$$
\begin{aligned}
& V=\sum_{i=1}^{k} c_{i} e_{i}=\sum_{i=1}^{k} d_{i} e_{i} \\
& \Rightarrow \sum_{i=1}^{k}\left(c_{i}-d_{i}\right) e_{i}=0
\end{aligned}
$$

$\Rightarrow c_{i}=d_{i} \forall i=l_{1 \ldots, k,}$, since E is linearly indep.
"3) $\Rightarrow 1)^{\prime \prime}$: We suppose any $v \in V$ camb uniquely written as $\sum_{i=1}^{k} c_{i} e_{i}$.
Then clearly E is a generating subset of V. Is it also minimal?
Assume Enol minimal.
Then $\exists e \in E$ s.f. $E \backslash\{e\}$ is a generating subset.

$$
\Longrightarrow \exists e_{11 \ldots,} e_{k} \in E, c_{11} \ldots, c_{k} \in F_{1} \text { s.t.e }=\sum_{i=1}^{k} c_{i} e_{i}
$$

Thus, e can be written in two ways
\Rightarrow contradiction to mique representation $=>E$ minimal

