Subspaces:
Instituted by lines, planes (through the origin) in
$$\mathbb{R}^3$$
 and results
from Analysis (eggsms of cont. fet. 2 are cont)

$$\frac{Def.:}{} A \text{ Subset } WeV \text{ is called a schepace if W is a vector} \\ \text{space w.r.l. the induced operations (i.e., the same addition
oned scalar wilt. as in V).
Non-empty Subset WeV is a subspace
$$\langle = > W \text{ is closed w.r.f. the induced operations} \\ \frac{\mathbb{P}oof:}{} = 2^{\circ} \text{ clear} \\ \frac{\mathbb{P}oof:}{} = 2^{\circ} \text{ will be subsclipted as be it holds on V} \\ \frac{\mathbb{P}oof:}{} = 2^{\circ} \text{ cleared} \\ \frac{\mathbb{P}oof:}{} = 2^{\circ} \text{ will close of } \mathbb{P}o_{i} = 2^{\circ} \text{ will be added element} \\ \frac{\mathbb{P}oof:}{} = 2^{\circ} \text{ will close of } \mathbb{P}o_{i} = 2^{\circ} \text{ will close of } \mathbb{P}ool = 2^{\circ} \text{ will close of } \mathbb{P}ool = 2^{\circ} \text{$$$$

· led weW, then inv. - we in W equals inv. - we in V

$$\frac{Trood:}{Trood:} = W - w_w = 0 = W - w_v$$

$$(=> W - w_w - w_v = W - w_v$$

$$= -w_v$$

$$\frac{E_{X.:}}{E_{X.:}} \cdot \left\{ (0, \times_{21} \times_{3}) \in TR^3; x_2 = \chi_1 + 3 \times_{3} - 5 \right\} \text{ is not a subspace}$$

$$\cdot \left\{ (\chi_{1,1} \times_{21} \times_{3}) \in TR^3; x_2 = \chi_1 + 3 \times_{3} - 5 \right\} \text{ is not a subspace}$$

$$\cdot \text{ space of cont. led.s is a subspace of space of all fet.s$$

$$I.3 \text{ Span, Basis, Dimension}$$
multivelion:

$$\cdot \text{ two vectors } V_{1,1} \vee_{2} \in TR^3 \text{ with } V_{1} \neq C \cdot V_{2} \text{ for } C \in TR \text{ span a linique} \text{ plane through 0}$$

$$L \text{ then all vectors in place can be writhen as $W = C_1V_1 + C_2V_2$

$$(c_{1,1}c_{1} \in TR)$$

$$\cdot \text{ all places through 0 can be writhen as $C_1 \times + C_2V_1 + C_3Z = 0$
for non-zero $C_{11}C_{21}C_{3}$

$$\frac{Dcl.:}{2} (c_{1}V \text{ be a vector space over some field F. Then $c_{1}V_{1} + \cdots + c_{k}V_{k} = \sum_{i=1}^{k} c_{i}V_{i} \text{ for } c_{i} \in F_{1}V_{1} \in V_{1} = l_{1}\cdots, k$$$$$$$

is called a linear combination.

Det.: For any subset SCV, we det.
space (S) = {all linear combinations
$$\sum_{i=1}^{k} c_i S_i$$
 with $c_i \in F_i S_i \in S_i$
 $i = l..., k_i \ k \in M$ }
wate: for any subset ScV, space(S) is a subspace (HW)
 \cdot space(S) is the smallest subspace, i.e., space(S) = (MW (HW))
 \cdot if WcV is a subspace, then space(W) = W,
Det.: A subset ScV, s.t. space(S) = V is called a
generating set (or, a spanning set).
Det.: A uninimal generating set is called a basis of V
(ninimal means no element can be removed).
Det.: A subset ScV is called linearly independent if $\sum_{i=1}^{k} c_i S_i = O$
for $c_i \in F_i$ sie S always implies $c_i = O$ $Hirt_{i-1}K$
Otherwise it's called linearly dependent.

Theorem: (et V be a vector space over a field F, and EcVa
sheet. Then the following are equivalent:
1) E is a basis of V
2) E is a maximal linearly independent set
3) every veV can uniquely be unitlen as
$$v = \sum_{i=1}^{n} c_i e_{i,i}$$
 for
 $c_i c \in T$, $e_i \in E_i$ is $i_i \dots k$, $k \in \mathbb{A}$
Proof:
"I) => 21": We suppose E is a basis of V.
Assume E is linearly dependent. Then $\exists c_{i,\dots,c_{k}} \in T$, $e_{i,\dots,i} e_{k} \in E_{i}$
 $s.t. \sum_{i=1}^{k} c_{i}e_{i} = 0$ and $c_{i} \neq 0$.
 $=> e_{i} = -\sum_{i=2}^{k} \frac{c_{i}}{c_{i}} e_{i} => E \setminus \{e_{i}\}$ is a generating set
 $=> contradiction to E is a basis (a univined generating set)
 $=> E is linearly independent
Maximal? Choose $v \notin E_{i}$ can $E \cup \{v\}$ be linearly indep.?
Since E is generating $_{i} v = \sum_{i=1}^{k} c_{i}e_{i}$ for some $c_{i} \in T_{i}e_{i}e_{i}i_{1}h_{i,i}h_{i}ke_{i}k'$
 $=> 1.v + \sum_{i=1}^{k} (-c_{i})e_{i} = 0 => Ev\{v\}$ is (in. dep.
 $=> E$ is unaximal (in. indep. set$$

"2) => 3)": We suppose E is max. (in. indep. set
choose
$$v \in V$$
, if $v \in E$ we are done, so suppose $V \notin E$.
Then $E \cup \{v\}$ is lin, dop., i.e., $\exists c_1 c_1 c_2 \ldots c_k \in F$ and $e_1, \ldots, e_k \in E$,
s.t. $c \cdot v + \sum_{i=1}^{k} c_i e_i = 0$ and not all $c_i = 0$.
 $= \vee v = -\sum_{i=1}^{k} \frac{c_i}{c} e_i \quad (c \neq 0, otherwise E worldn't be lin, indep.)$
Uniqueness?
suppose $\exists e_1, \ldots, e_k \in E_1 \quad c_1, \ldots, c_k \in F_1$ diveridue F_1 such that
 $v = \sum_{i=1}^{k} c_i e_i = \sum_{i=1}^{k} d_i e_i$
 $= \vee \sum_{i=1}^{k} (c_i - d_i) e_i = 0$
 $= \vee c_i - c_i \quad Vi = l_1 \ldots k$, since E is linearly indep.
"3) => 1)": We suppose any $v \in V$ can be uniquely unitten as $\sum_{i=1}^{k} c_i e_i$.
Then clearly E is a generating subset of V . Is it also uninimal?
Assume E within d_i .
Then $\exists e \in E$ s.t. $E \setminus \{e\}$ is a generating subset.
 $= \vee \exists e_1, \ldots, e_k \in E_1, c_1, \ldots, c_k \in F_1, s.t. e = \sum_{i=1}^{k} c_i e_i$.
Thus, $e \in u$ in the unitten in two ways
 $= \vee contradiction to unique representation = \vee E uninimal$.