Linear Algebra

Midterm Exam

Instructions:

- Do all the work on this exam paper.
- Show your work, i.e., carefully write down the steps of your solution.
- Calculators and other electronic devices and notes are not allowed.
- You are free to refer to any results proven in class or the homework sheets unless stated otherwise (and unless the problem is to reproduce a result from class or the homework sheets), but you need to explicitly mention which one you refer to.

Name: \qquad

Problem 1: Vector Space [25 points]

Recall that a vector space V over a field F is a set with addition and scalar multiplication which is associative (for addition and scalar multiplication), commutative (for addition), distributive (for scalars and vectors), and where an additive zero and inverse, and a multiplicative identity exist.
(a) Prove that the zero, and the inverse element to each $v \in V$ are unique.
(b) Consider the vector space of all real polynomials of degree n or smaller. What is the zero element? What is the inverse element for any given polynomial? What is a basis for this vector space? What is its dimension? For $n>2$, is the space of all real polynomials of degree smaller or equal 2 a subspace (give a short explanation/proof)?
(c) Let $E \subset V$ and suppose that every $v \in V$ can be uniquely written as $v=\sum_{i=1}^{k} c_{i} e_{i}$ for some $k \in \mathbb{N}$, and $c_{i} \in F, e_{i} \in E$ for all $i=1, \ldots, k$. Prove that then E is a minimal generating set.

Problem 1: Extra Space

Problem 1: Extra Space

Problem 1: Extra Space

Problem 2: Linear Maps [25 points]

Let V, W be a vector spaces over the field F. Recall that $\mathcal{L}(V, W)$ denotes the set of all linear maps $V \rightarrow W$.
(a) Give an example of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $f(c v)=c f(v)$ for all $c \in \mathbb{R}$, $v \in \mathbb{R}^{2}$, but not $f\left(v_{1}+v_{2}\right)=f\left(v_{1}\right)+f\left(v_{2}\right)$ for all $v_{1}, v_{2} \in \mathbb{R}^{2}$.
(b) Give an example of a function $f: \mathbb{C} \rightarrow \mathbb{C}$ such that $f\left(z_{1}+z_{2}\right)=f\left(z_{1}\right)+f\left(z_{2}\right)$ for all $z_{1}, z_{2} \in \mathbb{C}$, but not $f(c z)=c f(z)$ for all $c, z \in \mathbb{C}$.
(c) Let E be a basis of V (which can be finite or countably infinite dimensional). Define what V^{*} (the dual space of V) and E^{*} (the dual basis) are. Prove that the dual basis is a linear independent set. Prove that for $\operatorname{dim} V<\infty$ the dual basis is indeed a basis, but that for countably infinite dimensional V this does not need to be true.

Problem 2: Extra Space

Problem 2: Extra Space

Problem 2: Extra Space

Problem 3: (Direct) Sums [25 points]
Let V_{1}, V_{2}, W be non-empty subspaces of a finite dimensional vector space V over the field F.
(a) Suppose $V_{1}+V_{2}$ is a direct sum. Prove that then $\operatorname{dim}\left(V_{1} \oplus V_{2}\right)=\operatorname{dim}\left(V_{1}\right)+\operatorname{dim}\left(V_{2}\right)$.
(b) Either prove or give a counterexample to the assertion that $V=V_{1} \oplus W$ and $V=$ $V_{2} \oplus W$ implies $V_{1}=V_{2}$.
(c) Let p_{1}, \ldots, p_{n} be projectors $V \rightarrow V$ with $\sum_{i=1}^{n} p_{i}=$ id and $p_{i} p_{j}=0$ for all $i \neq j$. Prove that then

$$
V=\bigoplus_{i=1}^{n} \operatorname{im}\left(p_{i}\right) .
$$

Problem 3: Extra Space

Problem 3: Extra Space

Problem 3: Extra Space

Problem 4: Quotient Spaces [25 points]

Let M be a subspace of the finite dimensional vector space L over the field F. Recall that we proved in class that L^{*} / M^{\perp} is canonically isomorphic to M^{*}, and that $(L / M)^{*}$ is canonically isomorphic to M^{\perp}.
(a) Define what the quotient space L / M, the quotient map $q: L \rightarrow L / M$ and the orthogonal complement M^{\perp} are.
(b) Prove that $\operatorname{dim} M+\operatorname{dim} M^{\perp}=\operatorname{dim} L$.
(c) Let f be a linear map between two finite dimensional vector spaces V, W over the field F. Define what the dual map f^{*} is. Prove that $\operatorname{ker}\left(f^{*}\right)$ is canonically isomorphic to $(\operatorname{coker}(f))^{*}$, and that $\operatorname{im}\left(f^{*}\right)$ is canonically isomorphic to $(\operatorname{coim}(f))^{*}$.

Problem 4: Extra Space

Problem 4: Extra Space

Problem 4: Extra Space

