Syllabus for Stochastic Methods + Lab

(CO18-110221 and CO18-110222)

Fall Semester 2018

Up-to-date course information can be found on the course website http://math.jacobs-university.de/petrat/teaching/2018_fall_stochastic_methods/

1 Official Course Description

This course is a first hands-on introduction to stochastic modeling. Examples will mostly come from the area of Financial Mathematics, so that this course plays a central role in the education of students interested in Quantitative Finance and Mathematical Economics. Topics include binomial tree models, discrete Brownian paths, stochastic ODEs, Monte-Carlo methods, finite differences solutions for the Black-Scholes equation, and an introduction to time series analysis, parameter estimation, and calibration. Students will program and explore all basic techniques in a numerical programming environment and apply these algorithms to real data whenever possible

2 Contact Information

Instructor:	Prof. Sören Petrat
Email:	s.petrat@jacobs-university.de
Office:	Research I, room 112
TAs:	Sandeep Gyawali (s.gyawali@jacobs-university.de),
	Lee Ilseok (i.lee@jacobs-university.de)

3 Time and Place

Thu 15:45 – 17:00, East Hall 4 Fri 08:15 – 09:30, 09:45 – 11:00, East Hall 4 First class: September 6, 2018; last class: December 7, 2018

4 Textbooks

The class material is similar to the following book:

• Lyuu - Financial Engineering and Computation - Principles, Mathematics, Algorithms (Cambridge University Press).

Also, some material is similar to

• Etheridge - A Course in Financial Mathematics (Cambridge University Press),

which is, however, more mathematically involved than this class.

5 Homework Assignment

Each week on Thursday (with exceptions) there will be a homework assignment. The homework assignments have to be uploaded individually on each student's own branch on the bitbucket server via git (details are announced in class). The due date is one week after the class, i.e., usually the Thursday after the sheet is available. On this day, the homework has to be uploaded before class begins. Homeworks that are handed in late are downgraded to 75% of the original score. Note: It is encouraged to discuss the exercise sheets with your classmates (e.g., discuss how to come up with the solution or what the right way of approaching the problem is). On the other hand, the solutions must be written down and handed in individually! Copying the solutions from somebody else is a violation of Academic Integrity!

6 Exams

There will be a final take-home exam.

7 Grading

The final grade is weighted as follows:

Homework: 80%

Final take-home exam: 20%

Note: The grade for Stochastic Methods and the grade for Stochastic Methods Lab are the same.

8 Tentative Class Schedule

Session Date Topic

-	C A	
1	Sep 6	Organization, Introduction to Scientific Python, Introduction to git
2	Sep 7	Basics of financial math
3	Sep 13	Bonds
4	Sep 14	Bonds
5	Sep 20	Immunization
6	Sep 21	Options
7	Sep 27	Binomial tree method
8	Sep 28	Binomial tree method
9	Oct 4	Binomial tree method
10	Oct 5	Black-Scholes formula
11	Oct 11	Brownian Motion, Geometric Brownian Motion
12	Oct 12	Stochastic Integrals
13	Oct 18	Stochastic Differential Equations
14	Oct 19	Weak and strong convergence
15	$Oct \ 25$	Ito Lemma
16	Oct 26	Black-Scholes SPDE
17	Nov 1	Finite difference approximation, stability
18	Nov 2	Time Series, autocorrelation
19	Nov 8	Time Series
20	Nov 9	Time Series
21	Nov 15	Time Series
22	Nov 16	Application to stock data
23	Nov 22	Application to stock data
24	Nov 23	Stochastic Resonance, Ornstein-Uhlenbeck process, Fokker-Planck equation
25	Nov 29	TBA
26	Nov 30	TBA
27	Dec 6	TBA
28	Dec 7	TBA