Analysis II

Homework 11
Due on May 8, 2018

Problem 1 [8 points]: Cauchy-Riemann differential equations and harmonic functions

A function $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is called harmonic if it is C^{2} and $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$.
(a) Show that $u(x, y)=x^{3}-3 x y^{2}$ and $v(x, y)=3 x^{2} y-y^{3}$ are both harmonic.
(b) More generally, prove that whenever $u, v: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are two C^{2} functions that satisfy the Cauchy-Riemann differential equations (see Problem 3 from homework sheet 9), then u and v are both harmonic.
(c) [4 bonus points] Can you give conditions on when a harmonic function can have a local maximum?

Problem 2 [18 points]: Twice differentiable

Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $f(x, y)=x y\left(x^{2}-y^{2}\right) /\left(x^{2}+y^{2}\right)$ for $(x, y) \neq(0,0)$.
(a) Is f twice partially differentiable on $\mathbb{R}^{2} \backslash(0,0)$, and are the second derivatives continuous?
(b) Show that with $f(0,0)=0$, the function f is twice partially differentiable at $(0,0)$.
(c) Compute $\frac{\partial^{2} f}{\partial x \partial y}$ and $\frac{\partial^{2} f}{\partial y \partial x}$ at $(x, y)=(0,0)$. Should that be surprising?

Problem 3 [6 points]: Second Order Taylor

Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $f(x, y)=e^{-y^{2}}-x^{2}(y+1)$.
(a) Prove that $f \in C^{2}$ and write down the Taylor expansion to second order.
(b) Does f have local extrema? Are these also global extrema?

Problem 4 [8 points]: The wave equation

The famous wave equation in one (space) dimension is the equation $\frac{\partial^{2} f}{\partial t^{2}}=c^{2} \frac{\partial^{2} f}{\partial x^{2}}$ for a C^{2}-function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $c \in \mathbb{R}$.
(a) Verify that $f(t, x)=a \cos (x-c t)+b \sin (x-c t)$ solves this wave equation for arbitrary $a, b \in \mathbb{R}$.
(b) Under which conditions on $g: \mathbb{R} \rightarrow \mathbb{R}$ is the function $f(t, x)=g(x-c t)$ a solution to the wave equation?
(c) The wave equation in n space dimensions is $\frac{\partial^{2} f}{\partial t^{2}}=c^{2} \sum_{i=1}^{n} \frac{\partial^{2} f}{\partial x_{i}^{2}}$ for a C^{2}-function $f: \mathbb{R}^{n+1} \rightarrow$ \mathbb{R} and $c \in \mathbb{R}$. Verify that for every $k \in \mathbb{R}^{n}$ (the wave direction vector) there is a solution $f(t, x)=\cos (\langle k, x\rangle-\omega t)$ for appropriate $\omega \in \mathbb{R}$, where $\langle k, x\rangle=\sum_{i=1}^{n} k_{i} x_{i}$ is the scalar product.
(d) [4 bonus points] Find more general solutions to the wave equation.

