Analysis II

Homework 12

Due on May 15, 2018

Problem 1 [10 points]: Very basic vector calculus

Let us formally define the nabla operator $\nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$. Then the three classical vector differential operators gradient, curl, and divergence are defined as

$$
\begin{aligned}
\operatorname{grad} f & =\nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right), \text { for } f: \mathbb{R}^{3} \rightarrow \mathbb{R}, \\
\operatorname{curl} g & =\nabla \times g=\left(\frac{\partial g_{z}}{\partial y}-\frac{\partial g_{y}}{\partial z}, \frac{\partial g_{x}}{\partial z}-\frac{\partial g_{z}}{\partial x}, \frac{\partial g_{y}}{\partial x}-\frac{\partial g_{x}}{\partial y}\right), \text { for } g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \\
\operatorname{div} h & =\nabla h=\frac{\partial h_{x}}{\partial x}+\frac{\partial h_{y}}{\partial y}+\frac{\partial h_{z}}{\partial z}, \text { for } h: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} .
\end{aligned}
$$

(a) Show that every C^{2} function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ satisfies curl grad $f=0$.
(b) Show that every C^{2} function $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ satisfies div curl $g=0$.
(c) Show that every C^{2} function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ satisfies div grad $f=\Delta f$, where $\Delta=\nabla \nabla$ is the Laplace operator, i.e.,

$$
\Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
$$

(d) Show that every C^{2} function $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ satisfies curl curl $f=\operatorname{grad} \operatorname{div} f-\Delta f$.
(e) Let $E, B: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be $C^{2}(E=E(t, x), B=B(t, x))$, and let them satisfy Maxwell's equations in vacuum

$$
\operatorname{div} E=0, \quad \operatorname{div} B=0, \quad \operatorname{curl} E=-\frac{\partial B}{\partial t}, \quad \operatorname{curl} B=\frac{1}{c^{2}} \frac{\partial E}{\partial t},
$$

where $c>0$. Show that this implies that E and B satisfy a wave equation, i.e., that

$$
\frac{\partial^{2} E}{\partial t^{2}}=c^{2} \Delta E, \quad \frac{\partial^{2} B}{\partial t^{2}}=c^{2} \Delta B .
$$

Note that the wave equation is sometimes written as $\square E=0$, where $\square:=\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\Delta$ is called the d'Alembert operator.

Problem 2 [12 points]: Maxima and minima

Let $U \subset \mathbb{R}^{n}$ be open, let $f: U \rightarrow \mathbb{R}$ be C^{2}, and let $\nabla f(p)=0$ for some $p \in U$. Prove that if the Hessian $H_{f}(p)$ is positive definite (i.e., $h^{T} H_{f}(p) h>0$ for all $0 \neq h \in \mathbb{R}^{n}$, then f has a local minimum at p. Hint: Use the second order Taylor expansion from class. One strategy would be to consider h with $\|h\|=1$ first (does $h \mapsto h^{T} H_{f}(p) h$ have a minimum on this set?). Then generalize by setting $\tilde{h}=$ th with $t \geq 0$.

Problem 3 [10 points]: Two-dimensional polar coordinates
Consider the map $P: \mathbb{R}^{+} \times \mathbb{R} \rightarrow \mathbb{R}^{2}$ given by $(r, \phi) \mapsto(r \cos \phi, r \sin \phi)=:(x, y)$.
(a) For which k is this map a C^{k}-function?
(b) Compute $\left.D P\right|_{(r, \phi)}$ for arbitrary (r, ϕ). For which (r, ϕ) does P have a local inverse?
(c) Under which conditions is $P(r, \phi)=P\left(r^{\prime}, \phi^{\prime}\right)$? Show that P is a diffeomorphism from $\mathbb{R}^{+} \times(0,2 \pi)$ to a certain subset $U \subset \mathbb{R}^{2}$; what is U ? Specify an explicit inverse map $K:=P^{-1}$ to P on this domain.

Problem 4 [8 points]: Three-dimensional polar coordinates
Consider the map $Q: \mathbb{R}^{+} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}^{3}$ given by

$$
Q(r, \theta, \phi)=(r \cos \theta \cos \phi, r \cos \theta \sin \phi, r \sin \theta)=:(x, y, z) .
$$

In analogy to the previous problem, discuss how often Q is differentiable, compute $D Q$, and show at which points (x, y, z) the map Q has a local inverse. Discuss injectivity of Q and find as large as possible a domain on which Q is invertible.

Bonus Problem 1 [8 points]: Newton's Method in Several Variables

Give a proof of the following theorem. Suppose $U \subset \mathbb{R}^{n}$ is open and $f: U \rightarrow \mathbb{R}^{n}$ is C^{1} with $f(\xi)=0$. Define $N_{f}: U \rightarrow \mathbb{R}^{n}$ via $N_{f}(x)=x-(D f(x))^{-1} f(x)$. Then ξ has a neighborhood $U^{\prime} \subset U$ with $\left\|N_{f}(x)-\xi\right\|<\frac{1}{2}\|x-\xi\|$.

