Jacobs University Spring 2018

Analysis II

Homework 1

Due on February 19, 2018

Problem 1 [8 points]: The Stieltjes integral for a discontinuous α

Let $\alpha(x) = 0$ if $x \leq 0$ and $\alpha(x) = 1$ if x > 0. Give a precise proof that $\int_{-1}^{1} f \, d\alpha = f(0)$ for every function $f \colon \mathbb{R} \to \mathbb{R}$ that is continuous at x = 0.

Problem 2 [4 points]: Explicit Stieltjes integrals

Let $a < b \in (0, 4)$. Find a monotonically increasing bounded function $\alpha : \mathbb{R} \to \mathbb{R}$ such that

$$\int_0^4 f \, d\alpha = f(1) + 2f(2) + 3f(3) + \frac{1}{2} \int_a^b f(x) \, dx$$

for all f for which the integral exists.

Problem 3 [10 points]: Integrable and non-integrable functions Define two functions $f, g : [0, 1] \to \mathbb{R}$ via

$$f(x) := \begin{cases} 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}, \\ 1/q & \text{if } x = p/q, \\ g(x) := \end{cases} \text{ with } p, q \text{ coprime,} \\ \begin{cases} 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}, \\ 1 & \text{if } x \in \mathbb{Q}. \end{cases}$$

(a) Show that $f \in \mathcal{R}[0,1]$ and $\int_0^1 f(x) dx = 0$.

(b) Show that g is not Riemann-integrable.

Problem 4 [10 points]: Riemann integrable or not?

- (a) Show that $f(x) = e^x$ is Riemann integrable on $[a, b] \subset \mathbb{R}$. What is the value of $\int_a^b e^x dx$? (*Hint: Use an equidistant partition.*)
- (b) Show that f(x) = c ($c \in \mathbb{R}$) and g(x) = x are Riemann integrable on $[a, b] \subset \mathbb{R}$. Find

$$\int_{a}^{b} c \, dx$$
 and $\int_{a}^{b} x \, dx$.

(c) Show that $f(x) = x^n$ is Riemann integrable on $[0, a] \subset \mathbb{R}$ for every $n \in \mathbb{N}$. What is the value of $\int_0^a x^n dx$? (*Hint: You may use the fact that* $\sum_{k=1}^N k^n$ *is a polynomial in* Nof degree n + 1 and with leading coefficient 1/(n + 1), or - if you know it - use the Stolz-Cesàro theorem.)

Problem 5 [8 points]: Uniform continuity

Let $I \subset \mathbb{R}$ be an interval. A function $f: I \to \mathbb{R}$ is called *uniformly continuous* if for all $\varepsilon > 0$ there exists a $\delta > 0$ such that for all $x, x' \in I$ with $|x - x'| < \delta$ we have that $|f(x) - f(x')| < \varepsilon$ (in other words, the δ does not depend on x or x').

- (a) Show that if I = [a, b] is closed and bounded, then every continuous function $f : [a, b] \to \mathbb{R}$ is uniformly continuous. (*Hint: In general,* δ may depend on x and thus defines a function $\delta(x)$; show that $\delta(x)$ is continuous.)
- (b) Does this answer change if I is no longer closed, and/or no longer bounded?

Bonus Problem 1 [3 points]: Uniform continuity continued

We continue Problem 5.

- (a) Suppose $f, g : X \to \mathbb{R}$ are uniformly continuous on $X \subset \mathbb{R}$. Is it true that f + g is uniformly continuous on X? How about $f \cdot g$?
- (b) Does the answer to (c) change if f, g are bounded?
- (c) Does the answer to (c) change if X is a closed interval?

Bonus Problem 2 [5 points]: Devil's staircase and Stieltjes integrals

Define a function $\alpha: [0,1] \to \mathbb{R}$ as follows: Given $x \in [0,1]$, write $x = \sum_{i\geq 1} b_i 3^{-i}$ with $b_i \in \{0,1,2\}$ (representation of x in base 3). Let n be minimal with $b_n = 1$ (or $n = \infty$ if all $b_i \neq 1$). Then $\alpha(x) := \sum_{i=1}^n a_i 2^{-i}$, where $a_i = 1$ if $b_i \in \{1,2\}$ and $a_i = 0$ if $b_i = 0$. (For additional credit, you may check that the value of α is well defined even at points x that have two representations in base 3).

- (a) Sketch the graph of α .
- (b) Show that α is continuous and monotonically increasing.
- (c) Show that for every $\varepsilon > 0$, there are finitely many intervals $I_{\varepsilon,1}, I_{\varepsilon,2}, \ldots I_{\varepsilon,n}$ with total length ε so that α is constant on $[0,1] \setminus (I_{\varepsilon,1} \cup I_{\varepsilon,2} \cup \ldots I_{\varepsilon,n})$ (this means that α is constant except on a set of volume zero, but α is continuous and non-constant).
- (d) Show that the integrals $\int_0^1 1 \, d\alpha$ and $\int_0^1 x \, d\alpha$ exist, and determine their values. (*Hint:* Show that $\int_0^1 (x 1/2) \, d\alpha = 0$.)