Analysis II

Homework 1

Due on February 19, 2018

Problem 1 [8 points]: The Stieltjes integral for a discontinuous α
Let $\alpha(x)=0$ if $x \leq 0$ and $\alpha(x)=1$ if $x>0$. Give a precise proof that $\int_{-1}^{1} f d \alpha=f(0)$ for every function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is continuous at $x=0$.

Problem 2 [4 points]: Explicit Stieltjes integrals
Let $a<b \in(0,4)$. Find a monotonically increasing bounded function $\alpha: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\int_{0}^{4} f d \alpha=f(1)+2 f(2)+3 f(3)+\frac{1}{2} \int_{a}^{b} f(x) d x
$$

for all f for which the integral exists.
Problem 3 [10 points]: Integrable and non-integrable functions
Define two functions $f, g:[0,1] \rightarrow \mathbb{R}$ via

$$
\begin{aligned}
& f(x):=\left\{\begin{array}{ll}
0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q}, \\
1 / q & \text { if } x=p / q,
\end{array} \text { with } p, q\right. \text { coprime, } \\
& g(x):= \begin{cases}0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q} \\
1 & \text { if } x \in \mathbb{Q}\end{cases}
\end{aligned}
$$

(a) Show that $f \in \mathcal{R}[0,1]$ and $\int_{0}^{1} f(x) d x=0$.
(b) Show that g is not Riemann-integrable.

Problem 4 [10 points]: Riemann integrable or not?

(a) Show that $f(x)=e^{x}$ is Riemann integrable on $[a, b] \subset \mathbb{R}$. What is the value of $\int_{a}^{b} e^{x} d x$? (Hint: Use an equidistant partition.)
(b) Show that $f(x)=c(c \in \mathbb{R})$ and $g(x)=x$ are Riemann integrable on $[a, b] \subset \mathbb{R}$. Find

$$
\int_{a}^{b} c d x \text { and } \int_{a}^{b} x d x
$$

(c) Show that $f(x)=x^{n}$ is Riemann integrable on $[0, a] \subset \mathbb{R}$ for every $n \in \mathbb{N}$. What is the value of $\int_{0}^{a} x^{n} d x$? (Hint: You may use the fact that $\sum_{k=1}^{N} k^{n}$ is a polynomial in N of degree $n+1$ and with leading coefficient $1 /(n+1)$, or - if you know it - use the Stolz-Cesàro theorem.)

Problem 5 [8 points]: Uniform continuity

Let $I \subset \mathbb{R}$ be an interval. A function $f: I \rightarrow \mathbb{R}$ is called uniformly continuous if for all $\varepsilon>0$ there exists a $\delta>0$ such that for all $x, x^{\prime} \in I$ with $\left|x-x^{\prime}\right|<\delta$ we have that $\left|f(x)-f\left(x^{\prime}\right)\right|<\varepsilon$ (in other words, the δ does not depend on x or x^{\prime}).
(a) Show that if $I=[a, b]$ is closed and bounded, then every continuous function $f:[a, b] \rightarrow \mathbb{R}$ is uniformly continuous. (Hint: In general, δ may depend on x and thus defines a function $\delta(x)$; show that $\delta(x)$ is continuous.)
(b) Does this answer change if I is no longer closed, and/or no longer bounded?

Bonus Problem 1 [3 points]: Uniform continuity continued

We continue Problem 5.
(a) Suppose $f, g: X \rightarrow \mathbb{R}$ are uniformly continuous on $X \subset \mathbb{R}$. Is it true that $f+g$ is uniformly continuous on X ? How about $f \cdot g$?
(b) Does the answer to (c) change if f, g are bounded?
(c) Does the answer to (c) change if X is a closed interval?

Bonus Problem 2 [5 points]: Devil's staircase and Stieltjes integrals
Define a function $\alpha:[0,1] \rightarrow \mathbb{R}$ as follows: Given $x \in[0,1]$, write $x=\sum_{i \geq 1} b_{i} 3^{-i}$ with $b_{i} \in\{0,1,2\}$ (representation of x in base 3). Let n be minimal with $b_{n}=1$ (or $n=\infty$ if all $b_{i} \neq 1$). Then $\alpha(x):=\sum_{i=1}^{n} a_{i} 2^{-i}$, where $a_{i}=1$ if $b_{i} \in\{1,2\}$ and $a_{i}=0$ if $b_{i}=0$. (For additional credit, you may check that the value of α is well defined even at points x that have two representations in base 3).
(a) Sketch the graph of α.
(b) Show that α is continuous and monotonically increasing.
(c) Show that for every $\varepsilon>0$, there are finitely many intervals $I_{\varepsilon, 1}, I_{\varepsilon, 2}, \ldots I_{\varepsilon, n}$ with total length ε so that α is constant on $[0,1] \backslash\left(I_{\varepsilon, 1} \cup I_{\varepsilon, 2} \cup \ldots I_{\varepsilon, n}\right)$ (this means that α is constant except on a set of volume zero, but α is continuous and non-constant).
(d) Show that the integrals $\int_{0}^{1} 1 d \alpha$ and $\int_{0}^{1} x d \alpha$ exist, and determine their values. (Hint: Show that $\int_{0}^{1}(x-1 / 2) d \alpha=0$.)

