Analysis II

Homework 2

Due on February 26, 2018

Problem 1 [15 points]: Properties of the Riemann-Stieltjes integral

Give careful proofs of the following results stated in class. The Riemann-Stieltjes integral has the properties:
(1) Linearity in f : If $f_{1}, f_{2} \in \mathcal{R}(\alpha)[a, b]$, then $f_{1}+f_{2} \in \mathcal{R}(\alpha)[a, b]$ with

$$
\int\left(f_{1}+f_{2}\right) d \alpha=\int f_{1} d \alpha+\int f_{2} d \alpha
$$

and if $f \in \mathcal{R}(\alpha)[a, b]$ and $\lambda \in \mathbb{R}$, then $\lambda f \in \mathcal{R}(\alpha)[a, b]$ with

$$
\int \lambda f d \alpha=\lambda \int f d \alpha
$$

In other words, \int_{a}^{b} is an \mathbb{R}-linear map from $\mathcal{R}(\alpha)[a, b]$ to \mathbb{R}.
(2) Monotonicity: If $f_{1}, f_{2} \in \mathcal{R}(\alpha)[a, b]$ and $f_{1}(x) \leq f_{2}(x)$ for all x, then $\int f_{1} d \alpha \leq \int f_{2} d \alpha$.
(3) Additivity of Intervals: If $f \in \mathcal{R}(\alpha)[a, b]$ and $c \in[a, b]$, then also $f \in \mathcal{R}(\alpha)[a, c]$ and $f \in \mathcal{R}(\alpha)[c, b]$ and

$$
\int_{a}^{b} f d \alpha=\int_{a}^{c} f d \alpha+\int_{c}^{b} f d \alpha
$$

and conversely.
(4) Standard Estimate of Integral: If $f \in \mathcal{R}(\alpha)[a, b]$ and $f(x) \leq M$ for all $x \in[a, b]$, then $\int_{a}^{b} f d \alpha \leq M(\alpha(b)-\alpha(a))$ (and similarly for lower bounds).
(5) Linearity in α : If $f \in \mathcal{R}\left(\alpha_{1}\right)[a, b] \cap \mathcal{R}\left(\alpha_{2}\right)[a, b]$ and $\lambda_{1}, \lambda_{2} \in \mathbb{R}_{0}^{+}$, then we have $f \in$ $\mathcal{R}\left(\lambda_{1} \alpha_{1}+\lambda_{2} \alpha_{2}\right)[a, b]$ with

$$
\int_{a}^{b} f d\left(\lambda_{1} \alpha_{1}+\lambda_{2} \alpha_{2}\right)=\lambda_{1} \int_{a}^{b} f d \alpha_{1}+\lambda_{2} \int_{a}^{b} f d \alpha_{2}
$$

Problem 2 [8 points]: When the integral is zero
Let $\alpha:[a, b] \rightarrow \mathbb{R}$ be a monotonically increasing bounded function. Suppose f is a continuous and non-negative function on $[a, b]$ and $f \in \mathcal{R}(\alpha)[a, b]$. Is it true that if $\int_{a}^{b} f d \alpha=0$ then $f(x)=0$ for all $x \in[a, b]$? If not, give conditions on α for which this is true (with proof).

Problem 3 [8 points]: Simultaneous discontinuity of f and α
Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous except at one point $c \in(a, b)$, and let $\alpha:[a, b] \rightarrow \mathbb{R}$ be monotonically increasing and bounded. Suppose α is not continuous at c.
(a) Is it possible that $f \in \mathcal{R}(\alpha)[a, b]$? Give an example or prove there is none.
(b) Is it possible that $f \notin \mathcal{R}(\alpha)[a, b]$? Give an example or prove there is none.
(c) Bonus Question [2 points]: Try to find (and prove) necessary and sufficient conditions for $f \in \mathcal{R}(\alpha)[a, b]$.

Problem 4 [9 points]: Monotone functions are integrable
Let α be a monotonically increasing continuous function on $[a, b]$. Prove that if $f:[a, b] \rightarrow \mathbb{R}$ is monotone then $f \in R(\alpha)[a, b]$.

Bonus Problem 1 [3 points]: Sum of α 's
Suppose $f \in \mathcal{R}\left(\alpha_{1}+\alpha_{2}\right)$. Does this imply that $f \in \mathcal{R}\left(\alpha_{1}\right)$?
Bonus Problem 2 [3 points]: Integration of composition
Suppose $f:[a, b] \rightarrow[m, M]$ is continuous and $g:[m, M] \rightarrow \mathbb{R}$ is bounded and Riemannintegrable. Does this imply that $g \circ f$ is Riemann-integrable? (If there are no counterexamples here, then what if f is Riemann-integrable but not necessarily continuous?)

