Jacobs University Spring 2018

Analysis II

Homework 2

Due on February 26, 2018

Problem 1 [15 points]: Properties of the Riemann-Stieltjes integral

Give careful proofs of the following results stated in class. The Riemann-Stieltjes integral has the properties:

(1) Linearity in f: If $f_1, f_2 \in \mathcal{R}(\alpha)[a, b]$, then $f_1 + f_2 \in \mathcal{R}(\alpha)[a, b]$ with

$$\int (f_1 + f_2) \, d\alpha = \int f_1 \, d\alpha + \int f_2 \, d\alpha,$$

and if $f \in \mathcal{R}(\alpha)[a, b]$ and $\lambda \in \mathbb{R}$, then $\lambda f \in \mathcal{R}(\alpha)[a, b]$ with

$$\int \lambda f \, d\alpha = \lambda \int f \, d\alpha.$$

In other words, \int_a^b is an \mathbb{R} -linear map from $\mathcal{R}(\alpha)[a,b]$ to \mathbb{R} .

- (2) Monotonicity: If $f_1, f_2 \in \mathcal{R}(\alpha)[a, b]$ and $f_1(x) \leq f_2(x)$ for all x, then $\int f_1 d\alpha \leq \int f_2 d\alpha$.
- (3) Additivity of Intervals: If $f \in \mathcal{R}(\alpha)[a, b]$ and $c \in [a, b]$, then also $f \in \mathcal{R}(\alpha)[a, c]$ and $f \in \mathcal{R}(\alpha)[c, b]$ and

$$\int_{a}^{b} f \, d\alpha = \int_{a}^{c} f \, d\alpha + \int_{c}^{b} f \, d\alpha$$

and conversely.

- (4) Standard Estimate of Integral: If $f \in \mathcal{R}(\alpha)[a,b]$ and $f(x) \leq M$ for all $x \in [a,b]$, then $\int_a^b f \, d\alpha \leq M(\alpha(b) \alpha(a))$ (and similarly for lower bounds).
- (5) Linearity in α : If $f \in \mathcal{R}(\alpha_1)[a,b] \cap \mathcal{R}(\alpha_2)[a,b]$ and $\lambda_1, \lambda_2 \in \mathbb{R}^+_0$, then we have $f \in \mathcal{R}(\lambda_1\alpha_1 + \lambda_2\alpha_2)[a,b]$ with

$$\int_{a}^{b} f \, d(\lambda_1 \alpha_1 + \lambda_2 \alpha_2) = \lambda_1 \int_{a}^{b} f \, d\alpha_1 + \lambda_2 \int_{a}^{b} f \, d\alpha_2$$

Problem 2 [8 points]: When the integral is zero

Let $\alpha : [a, b] \to \mathbb{R}$ be a monotonically increasing bounded function. Suppose f is a continuous and non-negative function on [a, b] and $f \in \mathcal{R}(\alpha)[a, b]$. Is it true that if $\int_{a}^{b} f \, d\alpha = 0$ then f(x) = 0 for all $x \in [a, b]$? If not, give conditions on α for which this is true (with proof).

Problem 3 [8 points]: Simultaneous discontinuity of f and α

Suppose $f: [a, b] \to \mathbb{R}$ is continuous except at one point $c \in (a, b)$, and let $\alpha: [a, b] \to \mathbb{R}$ be monotonically increasing and bounded. Suppose α is not continuous at c.

- (a) Is it possible that $f \in \mathcal{R}(\alpha)[a, b]$? Give an example or prove there is none.
- (b) Is it possible that $f \notin \mathcal{R}(\alpha)[a,b]$? Give an example or prove there is none.
- (c) Bonus Question [2 points]: Try to find (and prove) necessary and sufficient conditions for $f \in \mathcal{R}(\alpha)[a, b]$.

Problem 4 [9 points]: Monotone functions are integrable

Let α be a monotonically increasing continuous function on [a, b]. Prove that if $f : [a, b] \to \mathbb{R}$ is monotone then $f \in R(\alpha)[a, b]$.

Bonus Problem 1 [3 points]: Sum of α 's

Suppose $f \in \mathcal{R}(\alpha_1 + \alpha_2)$. Does this imply that $f \in \mathcal{R}(\alpha_1)$?

Bonus Problem 2 [3 points]: Integration of composition

Suppose $f: [a, b] \to [m, M]$ is continuous and $g: [m, M] \to \mathbb{R}$ is bounded and Riemannintegrable. Does this imply that $g \circ f$ is Riemann-integrable? (If there are no counterexamples here, then what if f is Riemann-integrable but not necessarily continuous?)