Analysis II

Homework 3

Due on March 5, 2018

Problem 1 [10 points]: Partial fractions

Let P and Q be two polynomials with real coefficients, and suppose that

$$
Q(x)=\left(x-\alpha_{1}\right) \cdot\left(x-\alpha_{2}\right) \cdot \ldots \cdot\left(x-\alpha_{n}\right),
$$

where all α_{i} are real and different. For this problem, you may use the fact $\int_{a}^{b} \frac{d x}{x}=\left.\ln (x)\right|_{a} ^{b}$.
(a) Show that there is a unique polynomial R with real coefficients, and unique real numbers A_{1}, \ldots, A_{n} such that

$$
\frac{P(x)}{Q(x)}=R(x)+\frac{A_{1}}{x-\alpha_{1}}+\frac{A_{2}}{x-\alpha_{2}}+\cdots+\frac{A_{n}}{x-\alpha_{n}} .
$$

(Hint: Here you could use long division of polynomials or some basic results from linear algebra.)
(b) Find a closed formula for $\int_{a}^{b} \frac{P(x)}{Q(x)} d x$ (say, provided Q has no zero on $[a, b]$).
(c) In particular, find a closed formula for $\int \frac{5 x^{4}+4 x^{3}+3 x^{2}+2 x+1}{x^{3}-2 x^{2}-5 x+6} d x$ (wherever the denominator is non-zero).
(d) Is there a similar formula if Q has multiple linear factors, or if Q does not split into real linear factors? Outline how every rational function can be integrated in closed form (no proof required).

Problem 2 [6 points]: Integration by substitution
(a) Compute $\int_{0}^{1 / 2} \frac{1}{1-x^{2}} d x$.
(b) Compute $\int_{0}^{1} \frac{1}{\sqrt{1+x^{2}}} d x$ (think of hyperbolic trigonometric functions).
(c) For every odd $n \in \mathbb{N}$, show how $\int_{0}^{1} x^{n} e^{-x^{2}} d x$ can be reduced to an integral of the form $\int_{a}^{b} t^{k} e^{-t} d t$

Problem 3 [18 points]: Lots of integrals ...

(1) Compute the following integrals using an appropriate substitution or the formula for the derivative of the inverse function (hint: trigonometric substitutions):
(a) $\int \frac{1}{x} d x$,
(b) $\int \frac{1}{\sqrt{1-x^{2}}} d x$,
(c) $\int \frac{1}{1+x^{2}} d x$,
(d) $\int \frac{1}{a^{2}+x^{2}} d x$,
(e) $\int_{0}^{1} \frac{x}{x^{2}+4} d x$,
(f) $\int_{0}^{1} \frac{1}{x^{2} \sqrt{x^{2}+1}} d x$.
(2) Compute the following integrals using integration by parts:
(a) $\int_{0}^{1} \arcsin (x) d x$,
(b) $\int_{0}^{1} \arccos (x) d x,($ compare this with (a))
(c) $\int_{0}^{1} e^{x}\left(x^{2}+1\right) d x$.

Problem 4 [6 points]: Uniform convergence of second derivatives

Suppose that $f_{n}:[a, b] \rightarrow \mathbb{R}$ is continuous and twice differentiable on (a, b) and so that $f_{n}^{\prime \prime}: \rightarrow g$ uniformly on $[a, b]$. Give sufficient conditions so that the f_{n} converge to a limit function as well.

Bonus Problem 1 [4 points]: Null sets

A set $X \subset \mathbb{R}$ is called a set of volume 0 ("Jordan measure zero") if for every $\varepsilon>0$ there exists a finite family of open intervals $\left(U_{n}\right)_{n=1}^{k}$ with total length less than ε that covers X, i.e., such that

$$
\sum_{n=1}^{k} \operatorname{length}\left(U_{n}\right)<\varepsilon \quad \text { and } \quad X \subset \bigcup_{n=1}^{k} U_{n}
$$

The set X is called a null set (a set of "Lebesgue measure zero") if for every $\varepsilon>0$ there exists a countable family of open intervals $\left(U_{n}\right)_{n \in \mathbb{N}}$ with total length less than ε that covers X, i.e., such that

$$
\sum_{n=1}^{\infty} \operatorname{length}\left(U_{n}\right)<\varepsilon \quad \text { and } \quad X \subset \bigcup_{n=1}^{\infty} U_{n} .
$$

Obviously, any set of Jordan measure 0 is a null set. Prove that:
(a) A finite union of sets of Jordan measure 0 still has Jordan measure 0 . Is this still true for countable unions?
(b) A countable union of null sets is a null set.
(c) \mathbb{Q} is a null set, but does not have Jordan measure 0 , and the same holds for $\mathbb{Q} \cap[0,1]$.
(d) The standard Cantor middle-third set has Jordan measure 0.

Bonus Problem 2 [4 points]: A criterion for Riemann integrability

Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function, and denote by D the set of its discontinuities. Prove that if D has Jordan measure 0 then f is Riemann integrable. Try to extend this for D being a null set and try to show the converse: any bounded function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable if and only if D is a null set.

