Analysis II

Homework 4

Due on March 12, 2018

Problem 1 [12 points]: Convergent and divergent series

Which of the following series converge absolutely, which ones conditionally, which ones diverge?
(a) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{(2 n-1)(2 n+1)}}$;
(b) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{(3 n-1) 3 n(3 n+1)}}$;
(c) $\sum_{n=1}^{\infty} \frac{\cos x^{n}}{n^{2}}$, for $x \in \mathbb{R}$;
(d) $\sum_{n=1}^{\infty}\left(\frac{n-1}{n}\right)^{n^{2}}$;
(e) $\sum_{n=2}^{\infty}(-1)^{n} \frac{1}{\ln n!}$;
(f) $\sum_{n=2}^{\infty} \frac{1}{n \ln ^{p} n}$, depending on $p \in \mathbb{R}$;
(g) $\sum_{n=1}^{\infty}(-1)^{n} n^{-s}$, depending on $s \in \mathbb{R}$.

Problem 2 [8 points]: Taylor series of logarithm

(a) Prove that $\int_{1}^{x} \frac{d t}{t}=\ln x$ for every $x>1$.
(b) Show that $\ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}$ for $x \in(-1,1)$. (Hint: $\frac{1}{1+x}$.)
(c) What can you say about the behavior of the power series of $\ln (1+x)$ at the end points $(-1$ and 1$)$ of the interval? Conclude that $\ln 2=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}$.

Problem 3 [6 points]: Dirichlet's test on convergence of series
Prove Dirichlet's test: Let $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ be sequences of complex and real numbers respectively, so that

- the partial sums $A_{N}=\sum_{n=0}^{N} a_{n}$ form a bounded sequence;
- $b_{0} \geq b_{1} \geq b_{2} \geq \cdots \geq 0$;
- $\lim _{n \rightarrow \infty} b_{n}=0$.

Then the series $\sum_{n=0}^{\infty} a_{n} b_{n}$ converges. (Hint: If A is a bound for all A_{N}, then what is a bound for the $b_{n} A_{N}$ for fixed n ?)

Problem 4 [14 points]: The Riemann zeta function

For $s \in \mathbb{C}$ with $\operatorname{Re} s>1$ define the Riemann zeta function via $\zeta(s):=\sum_{n=1}^{\infty} n^{-s}$.
(a) Show that the series defining the ζ function converges for every real $s>1$.
(b) Show that it converges absolutely for complex s with $\operatorname{Re} s>1$.
(c) Show that it is continuous and that $\zeta(s) \rightarrow \infty$ as $s \searrow 1$.
(d) Show that $\zeta(s)=s \int_{1}^{\infty} \frac{\lfloor x\rfloor}{x^{s+1}} d x$ for $s>1$, where $\lfloor x\rfloor$ is the floor function, i.e., $\lfloor x\rfloor$ is the greatest integer less than or equal to x. (Hint: compute $\sum_{n=1}^{N}(\ldots)-s \int_{1}^{N}(\ldots)$.)
(e) $\left[2\right.$ bonus points] Show that $\zeta(s)=\frac{s}{s-1}-s \int_{1}^{\infty} \frac{(x-\lfloor x\rfloor)}{x^{s+1}} d x$ for $s>1$.
(f) [2 bonus points] Conclude that there is a continuous function $f:[0, \infty) \rightarrow \mathbb{R}$ so that $\zeta(s)=\frac{1}{s-1}+f(s)$; in other words, the singularity of ζ at $s=1$ can be removed by subtracting a simple pole. (Note: In fact, $\zeta(s)-1 /(s-1)$ extends to a (complex) differentiable function on all of \mathbb{C}, and one of the most famous open questions in mathematics, the Riemann hypothesis, is whether there exists an $s \in \mathbb{C}$ with $1 / 2<\operatorname{Re} s<1$ such that $\zeta(s)=0$.)

Bonus Problem 1 [4 points]: Abel's test on convergence of series

Prove Abel's test: Let $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ be sequences of complex and real numbers respectively, so that

- the series $\sum_{n=0}^{\infty} a_{n}$ converges;
- the sequence $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ is monotone and bounded.

Then the series $\sum_{n=0}^{\infty} a_{n} b_{n}$ converges. (Hint: One could prove Abel's test using Dirichlet's test.)

