Analysis II

Homework 5

Due on April 3, 2018

Problem 1 [8 points]: More about convergence: root and ratio test

(a) State carefully the root test and the ratio test for series: in which cases do they imply convergence (absolute or conditional?) or divergence, in which cases are they inconclusive?
(b) Give three examples that were not yet treated in class: one each where the root test proves convergence of a series, where it proves divergence, and where it is not conclusive.
(c) Same for the ratio test (different examples, please).

Problem 2 [8 points]: More about convergence
Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence of positive real numbers. Show that convergence of $\sum_{n} a_{n}$ implies convergence of $\sum_{n} \frac{\sqrt{a_{n}}}{n}$.

Problem 3 [16 points]: More about convergence: infinite products
Let $\left(p_{n}\right)_{n \in \mathbb{N}}$ be a sequence of non-zero complex numbers. Define $P_{n}=\prod_{i=0}^{n} p_{i}$. If the sequence $\left(P_{n}\right)_{n \in \mathbb{N}}$ converges then we denote its limit by $\prod_{n=0}^{\infty} p_{n}$. If the limit exists and is not zero, then we say that the infinite product $\prod_{n=0}^{\infty} p_{n}$ converges, otherwise the product is said to diverge.
(a) Assume that p_{n} are positive real numbers. Show that $\prod_{n=0}^{\infty} p_{n}$ converges if and only if $\sum_{n=0}^{\infty} \ln p_{n}$ converges.
(b) Show that if $p_{n} \geq 1$ for all n this latter condition is equivalent to the fact that $\sum_{n}\left(p_{n}-1\right)$ converges.
(c) Find a sequence $\left(p_{n}\right)_{n \in \mathbb{N}}$ of real numbers such that $\sum_{n=1}^{\infty}\left(p_{n}-1\right)$ converges but $\prod_{n=1}^{\infty} p_{n}$ diverges.
(d) Find a sequence $\left(p_{n}\right)_{n \in \mathbb{N}}$ of real numbers such that $\sum_{n=1}^{\infty}\left(p_{n}-1\right)$ diverges but $\prod_{n=1}^{\infty} p_{n}$ converges (and is greater than zero).
(e) [2 bonus points] Use the integral $\int_{0}^{\pi / 2} \cos ^{n} x d x$ to prove Wallis's formula for π :

$$
\prod_{n=1}^{\infty}\left(\frac{2 n}{2 n-1} \cdot \frac{2 n}{2 n+1}\right)=\frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdots=\frac{\pi}{2}
$$

Hint: Use the "squeeze theorem" (squeeze your sequence between two known ones).
(f) [1 bonus point] Show that

$$
\sin x=x \prod_{n=1}^{\infty}\left(1-\frac{x^{2}}{\pi^{2} n^{2}}\right)
$$

and obtain another proof of Wallis's formula.

Problem 4 [8 points]: More about convergence: Dirichlet series A Dirichlet series is a series of the form $f(s)=\sum_{n=1}^{\infty} a_{n} n^{-s}$ where all $a_{n} \in \mathbb{C}$.
(a) Show that there is an $s_{1} \in \mathbb{R} \cup\{ \pm \infty\}$ so that the series converges absolutely for $s>s_{1}$, and even for all $s \in \mathbb{C}$ with $\operatorname{Re} s>s_{1}$, but not for $s<s_{1}$. (This s_{1} is called the absolute convergence abscissa.)
(b) [2 bonus points] It may happen that the series converges conditionally for $s<s_{1}$. Show that this is possible only when $s \geq s_{1}-1$.
(c) [2 bonus points] Show that there is an $s_{0} \in \mathbb{R} \cup\{ \pm \infty\}$ so that the series converges conditionaly for $s>s_{0}$ and even for all $s \in \mathbb{C}$ with $\operatorname{Re} s>s_{0}$, but not for $s<s_{0}$. (This s_{0} is called the conditional convergence abscissa.)
(d) [1 bonus point] What are the absolute and conditional convergence abscissas for $f(s)=$ $\sum_{n \geq 1}(-1)^{n} n^{-s} ?$

Analysis II

Homework 6

Due on April 3, 2018

Problem 1 [12 points]: Rectifiable graphs and their arc length
Let $I=[a, b] \subset \mathbb{R}$ be a closed and bounded interval and $f: I \rightarrow \mathbb{R}$ a continuous function. The graph of f is the curve $\Gamma: I \rightarrow \mathbb{R}^{2}$ given by $t \mapsto(t, f(t))$.
(a) If f is continuously differentiable, express the length of the graph of f in terms of an integral.
(b) Find the length of the graph of $f(x)=\sqrt{1-x^{2}}$ for $x \in[0,1]$. Why should you have expected this answer?
(c) Find the length of the α-helix $\gamma:[0, x] \rightarrow \mathbb{R}^{3}$ given by $\gamma(t)=(\cos t, \sin t, \alpha t)$, for $\alpha \in \mathbb{R}$.
(d) Find the length of the graph of the function $t \mapsto \cosh t=\left(e^{t}+e^{-t}\right) / 2$ over the interval $[0, x]$.

Problem 2 [12 points]: The snowflake: a non-rectifiable curve (the "von Koch"curve)
Let us take a closer look at the von-Koch curve introduced in class. It is constructed iteratively in the following way:

1. Start with an equilateral triangle with sides of unit length.
2. On the middle third of each of the three sides, build an equilateral triangle with sides of length $1 / 3$. Erase the base of each of the three new triangles.
3. On the middle third of each of the twelve sides, build an equilateral triangle with sides of length $1 / 9$. Erase the base of each of the twelve new triangles.

The boundary after the n-th step is a piecewise linear curve, say γ_{n}; parametrize it as a map $\gamma_{n}:[0,1] \rightarrow \mathbb{R}^{2}$ so that $\left\|\gamma_{n}^{\prime}\right\|$ is constant.
(a) How many pieces does each γ_{n} have and what is their total length?
(b) Show that the sequence of maps γ_{n} converges uniformly to a continuous map $\gamma:[0,1] \rightarrow$ \mathbb{R}^{2}.

(c) Show that γ is not rectifiable.
(d) [1 bonus point] Show that the image of the snowflake curve is homeomorphic to the unit circle. (More precisely, find a continuous injective and surjective map from the circle to the image of the snowflake curve; continuity of the inverse will follow. How?)
(e) [1 bonus point] Prove that the snowflake is nowhere differentiable.

Problem 3 [16 points]: The hyperbolic metric

On the upper half plane $\mathbb{H}=\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}$, define the hyperbolic length of a continuously differentiable curve $\gamma:[a, b] \rightarrow \mathbb{H}$ (with $\gamma(t)=(x(t), y(t))$) by

$$
\Lambda_{H}(\gamma):=\int_{a}^{b} \frac{\left\|\gamma^{\prime}(t)\right\|}{y(t)} d t
$$

This is (up to a multiple) the only metric on \mathbb{H} that is preserved by all Möbius transformations $z \mapsto(a z+b) / c z+b$ with $a, b, c, d \in \mathbb{R}$ and $a d-b c=1$, where $z=x+i y=(x, y) \in \mathbb{H}$; the purpose of this problem is to prove this invariance.
(a) Compute the length of the curves $\gamma_{n}:[1,2] \rightarrow \mathbb{H}$ given by $\gamma_{n}(t)=\left(0,2^{n} t\right)$ connecting the two points $\left(0,2^{n}\right)$ and $\left(0,2^{n+1}\right)$.
(b) Define a mapping $T_{u}: \mathbb{H} \rightarrow \mathbb{H}$ given by $T_{u}(x, y):=(x+u, y)$ (with $u \in \mathbb{R}$) (horizontal translation). Show that any two curves γ and $T_{u} \circ \gamma$ have equal lengths (if defined).
(c) Do the same for the mapping $S_{r}: \mathbb{H} \rightarrow \mathbb{H}$ given by $S_{r}(x, y)=(r x, r y)$, where $r>0$ (scaling by a factor r).
(d) Do the same for the mapping $I: \mathbb{H} \rightarrow \mathbb{H}$ given by $I(x, y)=\left(\frac{x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}\right)$ (inversion in the unit circle).
(e) Conclude that the same result holds for any map $M(z)=\frac{a z+b}{c z+d}$ with $a, b, c, d \in \mathbb{R}$ and $a d-b c=1$ (where $z=x+i y$). (Hint: this does not involve a lot of writing.)

Bonus Problem 1 [2 points]: Devil's staircase

Find the length of the graph of the Devil's Staircase function (see Bonus Problem 2 from Homework 1).

Bonus Problem 2 [4 points]: Space-filling curves

The goal of this problem is to prove that there is a map $\phi:[0,1] \rightarrow[0,1]^{2}$ (from the closed unit interval to the closed unit square) which satisfies any two of the three properties: injectivity, surjectivity and continuity. (If ϕ satisfied all three properties, it would be a continuous bijection, but then $[0,1]$ and $[0,1]^{2}$ would be homeomorphic, which is not the case. Why?)
(a) Find an injective continuous map $\phi:[0,1] \rightarrow[0,1]^{2}$.
(b) Find an injective surjective map $\phi:[0,1] \rightarrow[0,1]^{2}$.

Hint: Write $x \in[0,1]$ in base 2 as $x=\sum_{k \geq 1} b_{k} 2^{-k}$, where $b_{i} \in\{0,1\}$ are binary digits. Remember that this representation has ambiguities!
(c) Find a continuous surjective map $\phi:[0,1] \rightarrow[0,1]^{2}$ (i.e. a space-filling curve).

Hint: Construct a sequence of continuous maps $\phi_{n}:[0,1] \rightarrow[0,1]^{2}$ that converges uniformly to a limiting map, so that for every $(x, y) \in[0,1]^{2}$ there is a $t \in[0,1]$ such that $\left\|(x, y)-\phi_{n}(t)\right\|<2^{-n / 2}$. This can be done by considering continuous curves going through the vertices of some equally-spaced grids in $[0,1]^{2}$.

