Jacobs University Spring 2018

Analysis II

Homework 5

Due on April 3, 2018

Problem 1 [8 points]: More about convergence: root and ratio test

- (a) State carefully the root test and the ratio test for series: in which cases do they imply convergence (absolute or conditional?) or divergence, in which cases are they inconclusive?
- (b) Give three examples that were not yet treated in class: one each where the root test proves convergence of a series, where it proves divergence, and where it is not conclusive.
- (c) Same for the ratio test (different examples, please).

Problem 2 [8 points]: More about convergence

Let $(a_n)_{n \in \mathbb{N}}$ be a sequence of positive real numbers. Show that convergence of $\sum_n a_n$ implies convergence of $\sum_n \frac{\sqrt{a_n}}{n}$.

Problem 3 [16 points]: More about convergence: infinite products

Let $(p_n)_{n \in \mathbb{N}}$ be a sequence of non-zero complex numbers. Define $P_n = \prod_{i=0}^n p_i$. If the sequence $(P_n)_{n \in \mathbb{N}}$ converges then we denote its limit by $\prod_{n=0}^{\infty} p_n$. If the limit exists and is not zero, then we say that the *infinite product* $\prod_{n=0}^{\infty} p_n$ converges, otherwise the product is said to diverge.

- (a) Assume that p_n are positive real numbers. Show that $\prod_{n=0}^{\infty} p_n$ converges if and only if $\sum_{n=0}^{\infty} \ln p_n$ converges.
- (b) Show that if $p_n \ge 1$ for all *n* this latter condition is equivalent to the fact that $\sum_n (p_n 1)$ converges.
- (c) Find a sequence $(p_n)_{n \in \mathbb{N}}$ of real numbers such that $\sum_{n=1}^{\infty} (p_n 1)$ converges but $\prod_{n=1}^{\infty} p_n$ diverges.
- (d) Find a sequence $(p_n)_{n \in \mathbb{N}}$ of real numbers such that $\sum_{n=1}^{\infty} (p_n 1)$ diverges but $\prod_{n=1}^{\infty} p_n$ converges (and is greater than zero).

(e) [2 bonus points] Use the integral $\int_0^{\pi/2} \cos^n x \, dx$ to prove Wallis's formula for π :

$$\prod_{n=1}^{\infty} \left(\frac{2n}{2n-1} \cdot \frac{2n}{2n+1} \right) = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdots = \frac{\pi}{2}.$$

Hint: Use the "squeeze theorem" (squeeze your sequence between two known ones).

(f) [1 bonus point] Show that

$$\sin x = x \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{\pi^2 n^2} \right)$$

and obtain another proof of Wallis's formula.

Problem 4 [8 points]: More about convergence: Dirichlet series

A Dirichlet series is a series of the form $f(s) = \sum_{n=1}^{\infty} a_n n^{-s}$ where all $a_n \in \mathbb{C}$.

- (a) Show that there is an $s_1 \in \mathbb{R} \cup \{\pm \infty\}$ so that the series converges absolutely for $s > s_1$, and even for all $s \in \mathbb{C}$ with $\operatorname{Re} s > s_1$, but not for $s < s_1$. (This s_1 is called the *absolute convergence abscissa*.)
- (b) [2 bonus points] It may happen that the series converges conditionally for $s < s_1$. Show that this is possible only when $s \ge s_1 - 1$.
- (c) [2 bonus points] Show that there is an $s_0 \in \mathbb{R} \cup \{\pm \infty\}$ so that the series converges conditionally for $s > s_0$ and even for all $s \in \mathbb{C}$ with $\operatorname{Re} s > s_0$, but not for $s < s_0$. (This s_0 is called the *conditional convergence abscissa.*)
- (d) [1 bonus point] What are the absolute and conditional convergence abscissas for $f(s) = \sum_{n>1} (-1)^n n^{-s}$?

Jacobs University Spring 2018

Analysis II

Homework 6

Due on April 3, 2018

Problem 1 [12 points]: Rectifiable graphs and their arc length

Let $I = [a, b] \subset \mathbb{R}$ be a closed and bounded interval and $f: I \to \mathbb{R}$ a continuous function. The graph of f is the curve $\Gamma: I \to \mathbb{R}^2$ given by $t \mapsto (t, f(t))$.

- (a) If f is continuously differentiable, express the length of the graph of f in terms of an integral.
- (b) Find the length of the graph of $f(x) = \sqrt{1 x^2}$ for $x \in [0, 1]$. Why should you have expected this answer?
- (c) Find the length of the α -helix $\gamma \colon [0, x] \to \mathbb{R}^3$ given by $\gamma(t) = (\cos t, \sin t, \alpha t)$, for $\alpha \in \mathbb{R}$.
- (d) Find the length of the graph of the function $t \mapsto \cosh t = (e^t + e^{-t})/2$ over the interval [0, x].

Problem 2 [12 points]: The snowflake: a non-rectifiable curve (the "von Koch"-curve)

Let us take a closer look at the von-Koch curve introduced in class. It is constructed iteratively in the following way:

- 1. Start with an equilateral triangle with sides of unit length.
- 2. On the middle third of each of the three sides, build an equilateral triangle with sides of length 1/3. Erase the base of each of the three new triangles.
- 3. On the middle third of each of the twelve sides, build an equilateral triangle with sides of length 1/9. Erase the base of each of the twelve new triangles.

The boundary after the *n*-th step is a piecewise linear curve, say γ_n ; parametrize it as a map $\gamma_n : [0, 1] \to \mathbb{R}^2$ so that $\|\gamma'_n\|$ is constant.

- (a) How many pieces does each γ_n have and what is their total length?
- (b) Show that the sequence of maps γ_n converges uniformly to a continuous map $\gamma \colon [0,1] \to \mathbb{R}^2$.

- (c) Show that γ is not rectifiable.
- (d) [1 bonus point] Show that the image of the snowflake curve is homeomorphic to the unit circle. (More precisely, find a continuous injective and surjective map from the circle to the image of the snowflake curve; continuity of the inverse will follow. How?)
- (e) [1 bonus point] Prove that the snowflake is nowhere differentiable.

Problem 3 [16 points]: The hyperbolic metric

On the upper half plane $\mathbb{H} = \{(x, y) \in \mathbb{R}^2 : y > 0\}$, define the hyperbolic length of a continuously differentiable curve $\gamma : [a, b] \to \mathbb{H}$ (with $\gamma(t) = (x(t), y(t))$) by

$$\Lambda_H(\gamma) := \int_a^b \frac{\|\gamma'(t)\|}{y(t)} dt \, .$$

This is (up to a multiple) the only metric on \mathbb{H} that is preserved by all Möbius transformations $z \mapsto (az + b)/cz + b$ with $a, b, c, d \in \mathbb{R}$ and ad - bc = 1, where $z = x + iy = (x, y) \in \mathbb{H}$; the purpose of this problem is to prove this invariance.

- (a) Compute the length of the curves $\gamma_n \colon [1,2] \to \mathbb{H}$ given by $\gamma_n(t) = (0,2^n t)$ connecting the two points $(0,2^n)$ and $(0,2^{n+1})$.
- (b) Define a mapping $T_u \colon \mathbb{H} \to \mathbb{H}$ given by $T_u(x, y) := (x + u, y)$ (with $u \in \mathbb{R}$) (horizontal translation). Show that any two curves γ and $T_u \circ \gamma$ have equal lengths (if defined).
- (c) Do the same for the mapping $S_r \colon \mathbb{H} \to \mathbb{H}$ given by $S_r(x, y) = (rx, ry)$, where r > 0 (scaling by a factor r).
- (d) Do the same for the mapping $I : \mathbb{H} \to \mathbb{H}$ given by $I(x, y) = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right)$ (inversion in the unit circle).
- (e) Conclude that the same result holds for any map $M(z) = \frac{az+b}{cz+d}$ with $a, b, c, d \in \mathbb{R}$ and ad bc = 1 (where z = x + iy). (*Hint: this does not involve a lot of writing.*)

Bonus Problem 1 [2 points]: Devil's staircase

Find the length of the graph of the Devil's Staircase function (see Bonus Problem 2 from Homework 1).

Bonus Problem 2 [4 points]: Space-filling curves

The goal of this problem is to prove that there is a map $\phi: [0,1] \to [0,1]^2$ (from the closed unit interval to the closed unit square) which satisfies any two of the three properties: *injectivity*, *surjectivity* and *continuity*. (If ϕ satisfied all three properties, it would be a continuous bijection, but then [0,1] and $[0,1]^2$ would be homeomorphic, which is not the case. Why?)

- (a) Find an injective continuous map $\phi \colon [0,1] \to [0,1]^2$.
- (b) Find an injective surjective map $\phi \colon [0,1] \to [0,1]^2$. *Hint:* Write $x \in [0,1]$ in base 2 as $x = \sum_{k \ge 1} b_k 2^{-k}$, where $b_i \in \{0,1\}$ are binary digits. *Remember that this representation has ambiguities!*
- (c) Find a continuous surjective map $\phi \colon [0,1] \to [0,1]^2$ (i.e. a space-filling curve).

Hint: Construct a sequence of continuous maps $\phi_n \colon [0,1] \to [0,1]^2$ that converges uniformly to a limiting map, so that for every $(x,y) \in [0,1]^2$ there is a $t \in [0,1]$ such that $||(x,y)-\phi_n(t)|| < 2^{-n/2}$. This can be done by considering continuous curves going through the vertices of some equally-spaced grids in $[0,1]^2$.