Analysis II

Homework 7

Due on April 10, 2018

Problem 1 [20 points]: Picard-Lindelöf

Suppose that $v: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a vector field that satisfies a Lipschitz condition with Lipschitz constant $L>0$ and set $\varepsilon:=\frac{1}{2 L}$. For $t_{0} \in \mathbb{R}$ and $x_{0} \in \mathbb{R}^{n}$, define

$$
X:=\left\{\gamma:\left[t_{0}, t_{0}+\varepsilon\right] \rightarrow \mathbb{R}^{n}, \gamma \text { is continuous, } \gamma\left(t_{0}\right)=x_{0}\right\}
$$

endowed with the supremum metric $d\left(\gamma_{1}, \gamma_{2}\right):=\sup _{t \in\left[t_{0}, t_{0}+\varepsilon\right]}\left\|\gamma_{1}(t)-\gamma_{2}(t)\right\|$. Finally, define the Picard-Lindelöf operator $P: X \rightarrow X$ by $P_{\gamma}(s)=\int_{t_{0}}^{s} v(\gamma(t)) d t+x_{0}$. Note: Some of the exercises were already partly done in class. Writing down a nice and complete proof possibly repeating some steps from class in the exercise here.
(a) Show that indeed for every $\gamma \in X$ also $P_{\gamma} \in X$. Prove that X is complete.
(b) Show that P_{γ} is a contraction, i.e., $d\left(P_{\gamma_{1}}, P_{\gamma_{2}}\right) \leq \frac{1}{2} d\left(\gamma_{1}, \gamma_{2}\right)$ here. Conclude that P_{γ} has a unique fixed point (you may use the Banach Fixed Point Theorem here without proof.)
(c) Show that every curve in $P(X)$ is C^{1}. Is P surjective?
(d) Show that the vector field v has a unique solution curve $\gamma:\left[t_{0}, t_{0}+\varepsilon\right] \rightarrow \mathbb{R}^{n}$ with $\gamma\left(t_{0}\right)=$ x_{0}.
(e) Show that the vector field has a unique solution curve $\gamma:\left[t_{0}, \infty\right) \rightarrow \mathbb{R}^{n}$ with $\gamma\left(t_{0}\right)=x_{0}$.

Problem 2 [8 points]: The exponential differential equation

We consider the particularly simple vector field on \mathbb{R} given by $v(x)=\lambda x$, with $\lambda \in \mathbb{R}$.
(a) Does v satisfy a Lipschitz condition? If so, what is the Lipschitz constant?
(b) Verify that $f(t)=a e^{\lambda t}$ is a solution curve, for every $a \in \mathbb{R}$.
(c) To show that $f(t)=a e^{\lambda t}$ is the unique solution with $f(0)=a$, show that an arbitrary solution curve $g(t)$ can always be written as $g(t)=a e^{\lambda t} \cdot h(t)$ for an appropriate curve $h: \mathbb{R} \rightarrow \mathbb{R}$, and so that h is C^{1} if g is. Show that necessarily $h^{\prime}(t)=0$ and that h must be constant.
(d) [3 bonus points] Do the same discussion for $v(x, y)=(\lambda x, \mu y)$ on \mathbb{R}^{2}, with $\lambda, \mu \in \mathbb{R}$.

Problem 3 [12 points]: Separation of variables

Prove the following theorem that was proven in class. Let I, J be open intervals and $f: I \rightarrow \mathbb{R}$ continuous and $g: J \rightarrow \mathbb{R}$ continuous with $g(x) \neq 0$ for all $x \in J$. Then for all initial conditions $\left(t_{0}, x_{0}\right) \in I \times J$ there is an open interval $I_{0} \subset I$ containing t_{0} and a C^{1} function $\gamma: I_{0} \rightarrow \mathbb{R}$ with $\gamma\left(t_{0}\right)=x_{0}$ which solves the differential equation $\gamma^{\prime}(t)=f(t) g(\gamma(t))$.
Hint: Proceed by first separating the variables formally and integrate both sides. (Is that possible? What properties do the integrals have?) Then you will need to take an inverse.

Bonus Problem 1 [5 points]: Exponential separation for Lipschitz vector fields

Suppose that $v: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a vector field that satisfies a Lipschitz condition with Lipschitz constant $L>0$. Show that if $\gamma_{1,2}: \mathbb{R} \rightarrow \mathbb{R}$ are two solution curves with $\left\|\gamma_{1}\left(t_{0}\right)-\gamma_{2}\left(t_{0}\right)\right\| \leq \delta$, then for all $t \geq t_{0}$ we have $\left\|\gamma_{1}(t)-\gamma_{2}(t)\right\| \leq \delta e^{L\left(t-t_{0}\right)}$. Discuss how sharp that bound is. Hint: This is not so hard. Start by proving the Gronwall lemma.

