Analysis II

Homework 9

Due on April 24, 2018

Problem 1 [10 points]: Connectedness

Prove that every path connected topological space is connected.
Hint: Recall the definitions of path connectedness and connectedness. One strategy is to assume that the space is path connected but not connected, and derive a contradiction.

Problem 2 [10 points]: Uniform continuity and compactness

Let $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ be metric spaces (and thus also topological spaces with the standard topology). A map $f: X \rightarrow Y$ is called uniformly continuous if for all $\varepsilon>0$ there is a $\delta>0$ such that $d_{X}\left(x, x^{\prime}\right)<\delta$ implies $d_{Y}\left(f(x), f\left(x^{\prime}\right)\right)<\varepsilon$ for all $x, x^{\prime} \in X$. Prove that if $f: X \rightarrow Y$ is continuous and X is compact, then f is uniformly continuous.

Hint: By continuity, there is a $\delta(x)$ for each $x \in X$. Rephrase continuity in term of balls with radius $\delta(x)$ and then carefully use what compactness means.

Problem 3 [10 points]: Partial derivatives

Consider the function $f=(u, v): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $f(x, y)=\left(x^{3}-3 x y^{2}, 3 x^{2} y-y^{3}\right)$ (i.e., $u(x, y)=x^{3}-3 x y^{2}$ and $\left.v(x, y)=3 x^{2} y-y^{3}\right)$.
(a) Prove that $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$. (These will play a prominent role in complex analysis as the Cauchy-Riemann differential equations.)
(b) Show that, identifying complex numbers as $z=x+i y$, then simply $f(z)=z^{3}$. (This really is a special case of the general fact that complex-differentiable functions, in particular polynomials, satisfy the Cauchy-Riemann differential equations; there is also a converse.)
(c) Verify the Cauchy-Riemann differential equations for the complex exponential function.

Problem 4 [10 points]: Derivatives, partial derivatives, and continuity
Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $f(x, y)=\frac{x y^{2}}{x^{2}+y^{2}}$ for $(x, y) \neq(0,0)$.
(a) We consider first $(x, y) \neq(0,0)$. Is f totally differentiable there? Do the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist? Do all directional derivatives exist? If so, compute all these derivatives for $(x, y) \neq(0,0)$.
(b) Is there a value for $f(0,0)$ so that the extension $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous on all of \mathbb{R}^{2} ?
(c) In case such an extension exists, do all directional derivatives at (0,0) exist? Is f (totally) differentiable at $(0,0)$?
(d) Answer questions $(a),(b)$ and (c) also for $g(x, y)=\frac{x y}{x^{2}+y^{2}}$ for $(x, y) \neq(0,0)$.

Bonus Problem 1 [8 points]: Banach fixed-point theorem

We have used the Banach fixed-point theorem (contraction mapping principle) already in the proof of the Picard-Lindelöf theorem and we are going to use it again in the proof of the inverse function theorem. So it's time to prove it.

In any metric space (X, d), a map $f: X \rightarrow X$ is called a contraction if there is an $r<1$ such that $d(f(x), f(y)) \leq r d(x, y)$ for all $x, y \in X$. Prove that when (X, d) is a complete metric space, then any contraction $f: X \rightarrow X$ has a unique fixed point (i.e., a unique $x^{*} \in X$ with $\left.f\left(x^{*}\right)=x^{*}\right)$.

Hint: Uniqueness is easy. The fixed point can be constructed by defining a sequence $x_{n+1}=f\left(x_{n}\right)$. Is this a Cauchy sequence?

