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Problem 1 [10 points]: Connectedness

Prove that every path connected topological space is connected.
Hint: Recall the definitions of path connectedness and connectedness. One strategy is to

assume that the space is path connected but not connected, and derive a contradiction.

Problem 2 [10 points]: Uniform continuity and compactness

Let (X, dX), (Y, dY ) be metric spaces (and thus also topological spaces with the standard
topology). A map f : X → Y is called uniformly continuous if for all ε > 0 there is a δ > 0
such that dX(x, x′) < δ implies dY (f(x), f(x′)) < ε for all x, x′ ∈ X. Prove that if f : X → Y
is continuous and X is compact, then f is uniformly continuous.

Hint: By continuity, there is a δ(x) for each x ∈ X. Rephrase continuity in term of balls
with radius δ(x) and then carefully use what compactness means.

Problem 3 [10 points]: Partial derivatives

Consider the function f = (u, v) : R2 → R2 defined by f(x, y) = (x3 − 3xy2, 3x2y − y3) (i.e.,
u(x, y) = x3 − 3xy2 and v(x, y) = 3x2y − y3).

(a) Prove that ∂u
∂x

= ∂v
∂y

and ∂u
∂y

= − ∂v
∂x

. (These will play a prominent role in complex analysis

as the Cauchy-Riemann differential equations.)

(b) Show that, identifying complex numbers as z = x+iy, then simply f(z) = z3. (This really
is a special case of the general fact that complex-differentiable functions, in particular
polynomials, satisfy the Cauchy-Riemann differential equations; there is also a converse.)

(c) Verify the Cauchy-Riemann differential equations for the complex exponential function.

Problem 4 [10 points]: Derivatives, partial derivatives, and continuity

Consider the function f : R2 → R given by f(x, y) = xy2

x2+y2
for (x, y) 6= (0, 0).

(a) We consider first (x, y) 6= (0, 0). Is f totally differentiable there? Do the partial deriva-
tives ∂f

∂x
and ∂f

∂y
exist? Do all directional derivatives exist? If so, compute all these

derivatives for (x, y) 6= (0, 0).

(b) Is there a value for f(0, 0) so that the extension f : R2 → R is continuous on all of R2?
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(c) In case such an extension exists, do all directional derivatives at (0, 0) exist? Is f (totally)
differentiable at (0, 0)?

(d) Answer questions (a), (b) and (c) also for g(x, y) = xy
x2+y2

for (x, y) 6= (0, 0).

Bonus Problem 1 [8 points]: Banach fixed-point theorem

We have used the Banach fixed-point theorem (contraction mapping principle) already in
the proof of the Picard-Lindelöf theorem and we are going to use it again in the proof of the
inverse function theorem. So it’s time to prove it.

In any metric space (X, d), a map f : X → X is called a contraction if there is an r < 1
such that d(f(x), f(y)) ≤ rd(x, y) for all x, y ∈ X. Prove that when (X, d) is a complete
metric space, then any contraction f : X → X has a unique fixed point (i.e., a unique x∗ ∈ X
with f(x∗) = x∗).

Hint: Uniqueness is easy. The fixed point can be constructed by defining a sequence
xn+1 = f(xn). Is this a Cauchy sequence?
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