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Chapter 1

Riemann–Stieltjes Integral in R

1.1 The Riemann Integral in R

Integration Integration gives us the “area under the curve.” And to actually
compute this area for some function f : [a, b] → R in the interval [a, b], we
divide the interval into smaller sections and approximate the area by taking
the sum of the rectangles introduced by these sections:

x0

a

x1 x2 · · · xn

b

∆x1 ∆x2
· · ·

This approximation gives us the upper Riemann sum (in blue) by taking the
supx∈∆x f(x) for each ∆x and the lower Riemann sum (in red) of rectangles by
taking the infx∈∆x f(x) for each ∆x.

However, for some functions, this approximation may not be very “nice”
and the upper and lower sums might end up disagreeing. So we say that the
Riemann integral of a function exists only if the upper Riemann sum and the
lower Riemann sum coincide.

Definition 1.1.1 (Partition). For an interval [a, b] ⊂ R, a partition P is a
finite set of points x0, x1, . . . , xn with a = x0 < x1 < · · · < xn = b. We also set
∆xi = xi − xi−1 for i = 1, . . . , n.

We can now define the integral of a bounded function f : [a, b]→ R. Since
the function is bounded, we know that ∃m,M ∈ R such that ∀x ∈ [a, b],m ≤
f(x) ≤M . For the i-th interval in some partition, we can define

mi = inf
x∈[xi−1,xi]

f(x), Mi = sup
x∈[xi−1,xi]

f(x).
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Definition 1.1.2 (Riemann Sums). For some function f : [a, b]→ R the upper
Riemann sum U(f,P) on some partition P of [a, b] is defined as

U(f,P) :=

n∑
i=1

Mi∆xi.

Similarly we define the lower Riemann sum L(f,P) as

L(f,P) :=

n∑
i=1

mi∆xi.

Definition 1.1.3 (Riemann integrals). We define the upper Riemann integral
for f : [a, b] 7→ R on some partition P of [a, b] as∫ b

a

f(x) dx := inf
P
U(f,P),

and the lower Riemann Integral as∫ b

a

f(x) dx := sup
P
L(f,P).

For the upper Riemann integral, the general idea is to take the infimum
of all possible upper sums over all possible partitions. Similar for the lower
Riemann integral, we consider the supremum of the lower Riemann sums.

Definition 1.1.4 (Riemann integrable function). A function f : [a, b] → R
is Riemann integrable if and only if the lower and the upper Riemann sums
coincide and we write:∫ b

a

f(x) dx :=

∫ b

a

f(x) dx =

∫ b

a

f(x) dx

(
=

∫ b

a

f dx

)
.

We also define R[a, b] as the set of all Riemann integrable functions on [a, b].

1.2 The Riemann-Stieltjes Integral

The Riemann integral uniformly assigns “weights” to different parts of the func-
tion to compute their contribution to the final value of the integral. Generalizing
this notion of “weight” gives us the Riemann–Stieltjes Integral (or simply, the
Stieltjes integral).

Let α : [a, b]→ R be a monotonically increasing (and thus bounded) function.
We now define, for a given partition P , ∆αi = α(xi)− α(xi−1) for i = 1, . . . , n.
From monotonicity, it immediately follows that ∆αi ≥ 0. We now redefine the
upper and lower Riemann sums to account for this α.
Note. α need not be continuous. Often we would deliberately make α discon-
tinuous to get some desired result (see Homework B.1.2).

Definition 1.2.1 (Upper/Lower Riemann–Stieltjes sums). We define the upper
and lower Riemann sums respectively as

U(f,P, α) =

n∑
i=1

Mi∆αi and L(f,P, α) =

n∑
i=1

mi∆αi.
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Definition 1.2.2 (Upper/Lower Riemann–Stieltjes integrals). The upper and
lower Riemann-Stieltjes integrals for f : [a, b]→ R on some partition P of [a, b]
are respectively given by∫ b

a

f(x) dα(x) := inf
P
U(f,P, α) and

∫ b

a

f(x) dα(x) := sup
P
L(f,P, α).

When the upper and the lower Riemann–Stieltjes sums coincide, we get the
Riemann–Stieltjes integral for that particular function.

Definition 1.2.3 (Riemann–Stieltjes Integrable Functions). A function f :
[a, b] → R is Riemann–Stieltjes integrable with respect to α when the upper
and the lower Riemann–Stieltjes sums coincide. That is∫ b

a

f(x) dα :=

∫ b

a

f(x) dα(x) =

∫ b

a

f(x) dα(x)

(
=

∫ b

a

f dα(x)

)
.

We also define R(α)[a, b] as the set of all Riemann–Stieltjes integrable functions
with respect to α.

Note (Riemann integral). The usual Riemann integral is a special case of the
Riemann–Stieltjes integral with α(x) = x.
Note (Differentiable α). When α(x) is differentiable, then the integral is
“weighted” by α′(x). That is∫

f dα =

∫
f

dα

dx
dx =

∫
fα′ dx.

That will be made precise in Section 1.8.
Note (Step function α). Consider

α(x) =

{
0, if x > ξ

1, if x ≤ ξ
.

Here ∆αi = 0 unless ξ ∈ (xi−1, xi]. Therefore for this fixed i, U(f,P, α) = Mi

and L(f,P, α) = mi. Then on [xi−1, xi],mi ≤ f(x) ≤Mi. If, additionally, f is
continuous at ξ, we can show that∫ b

a

f(x) dα =

∫ b

a

f(x) dα =

∫ b

a

f dα = f(ξ),

see Homework B.1.1.

1.3 Refinement of Partitions

Definition 1.3.1 (Refinement). A partition P∗ is finer than P if P ⊂ P∗.

Definition 1.3.2 (Common Refinement). We define the common refinement
P∗ of P1 and P2 as P∗ := P1 ∪ P2.

Lemma 1.3.1. If P∗ is a refinement of P, then U(f,P∗, α) ≤ U(f,P, α) and
L(f,P∗, α) ≥ L(f,P, α).
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Proof. Partitions are by definition finite, so we only consider the case when P∗ =
P ∪ {x∗}. Then for this point x∗ ∈ [xi−1, xi] we have: Mi = supx∈[xi−1,xi] f(x),
M∗i = supx∈[xi−1,x∗] f(x), M∗∗i = supx∈[x∗,xi] f(x).

Now, we get

U(f,P∗, α) = M∗i (α(x∗)− α(xi−1)) +M∗∗i (α(xi)− α(x∗)) + U∗P∗ ,

where U∗P∗ is the sum unaffected by the refinement. Since M∗i ,M∗∗i ≤Mi,

U(f,P∗, α) ≤Mi∆αi + U∗P∗ = U(f,P, α)

The proof for the lower sum is analogous and uses the the infima mi.

Corollary. ∫ b

a

f dα ≤
∫ b

a

f dα

Proof. Given P1 and P2 we take P∗ = P1 ∪ P2 the common refinement. From
Lemma 1.3.1 we get [rest of proof missing].

1.4 Existence criterion

Theorem 1.4.1. A function f ∈ R(α)[a, b] ⇐⇒ for all ε > 0, there is some
partition P such that 0 ≤ U(f,P, α)− L(f,P, α) < ε.

Proof. We prove sufficiency (⇐) and necessity (⇒) separately.

“⇐=” We know that for all P,

L(f,P, α) ≤
∫ b

a

f dα ≤
∫ b

a

f dα ≤ U(f,P, α).

Then,

0 ≤ U(f,P, α)− L(f,P, α) ≤ ε =⇒ 0 ≤
∫ b

a

f dα−
∫ b

a

ddα ≤ ε.

Since this holds for all ε > 0,
∫ b
a
f dα =

∫ b
a
f dα =⇒ f ∈ R(α)[a, b].

“=⇒” For some ε > 0 there are P1 and P2 such that

0 ≤ U(f,P1, α)−
∫ b

a

f dα ≤ ε

2
, 0 ≤ L(f,P2, α)−

∫ b

a

f dα ≤ ε

2
.

Since f ∈ R(α)[a, b],
∫ b
a
f dα =

∫ b
a
f dα =

∫ b
a
f dα. Taking the common

refinement P∗ = P1 ∪ P2, we get:

U(f,P∗, α) ≤ U(f,P1, α)

≤ ε

2
+

∫ b

a

f dα

≤ L(f,P2, α) + ε ≤ L(f,P∗, α) + ε

This implies 0 ≤ U(f,P∗, α)− L(f,P∗, α) ≤ ε.
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1.5 Continuous functions

Theorem 1.5.1. If f : [a, b] → R is continuous then f ∈ R(α)[a, b] for all
monotonically increasing α(x).

Proof. We fix some ε > 0, η > 0 such that

[α(b)− α(b)] η < ε.

Since f is uniformly continuous (see Homework B.1.5), there exists some δ > 0
such that for x, y ∈ [a, b]

|x− y| < δ =⇒ |f(x)− f(y)| < η.

We now choose our partition such that ∆xi < δ for all i. This implies in
particular that 0 ≤Mi −mi ≤ η for i = 1, 2, . . . , n, and thus

0 ≤ U(f,P, α)− L(f,P, α) =

n∑
i=1

(Mi −mi)∆αi

≤ η
n∑
i=1

∆αi = η
(
α(b)− α(a)

)
< ε,

so the statement follows from Lemma 1.4.1.

Theorem 1.5.2. A bounded function f : [a, b]→ R with finitely many points
of discontinuity e1, e2, . . . , ek such that α continuous for all ej is Riemann
integrable with respect to α i.e., f ∈ R(α)[a, b].

Note. In particular, f ∈ R[a, b].

Note. The theorem also holds for countably infinite many discontinuities.

Proof. [ToDo]

1.6 Basic properties of integrals

Theorem 1.6.1. 1. (Linearity) f1, f2 ∈ R(α)[a, b] =⇒ (f1 + f2) ∈
R(α)[a, b] and

∫ b
a

(f1 + f2) dα =
∫ b
a
f1 dα +

∫ b
a
f2 dα. Further, if λ ∈ R

then λf1 ∈ R(α)[a, b] with
∫ b
a
λf1 dα = λ

∫ b
a
f1 dα.

2. (Monotonicity) If f1(x) ≤ f2(x) for all x then
∫
f1 dα ≤

∫
f2 dα.

3. (Additivity) If f ∈ R(α)[a, b] and c ∈ (a, b) then f ∈ R(α)[a, c] and
f ∈ R(α)[c, b] with

∫ c
a
f dα+

∫ b
c
f dα =

∫ b
a
f dα.

4. (Standard Estimate) If f ∈ R(α)[a, b] and for all x ∈ [a, b], f(x) ≤ M ,
then,

∫ b
a
f dα ≤ M(α(b)− α(a)). The same holds in the other direction

with some m ≤ f(x).

5. (Linearity of α) If f ∈ R(α1)[a, b] ∪ R(α2)[a, b] and λ1, λ2 ≥ 0, then∫ b
a
f d(λ1α1 + λ2α2) = λ1

∫ b
a
f dα1 + λ2

∫ b
a
f dα2

Proof. See homework B.2.1.
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1.7 Compositions

1.8 Stieltjes integrals as change of variables

1.9 Change of variables

1.10 Integration and differentiation as inverse operations

1.11 Improper integrals

1.12 Uniform convergence
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Chapter 2

Convergence of Series

2.1 Convergence tests

Definition 2.1.1 (Convergence). Consider (ak)k∈N a sequence in C (i.e., each
ak ∈ C). We say that (ak) converges to a or ak

k→∞−−−−→ a if and only if for all
ε > 0 there is some N ∈ N such that for all n ≥ N, |an − a| < ε. We say that
(ak) diverges if it doesn’t converge.

Definition 2.1.2 (Cauchy sequence). A sequence (ak)k∈N is a Cauchy sequence
if and only if for all ε > 0 there is some N ∈ N such that for all n > N,m > N ,
|an − am| < ε.

Note. If (ak) converges then (ak) is a Cauchy sequence.
Note. In a complete metric space (e.g., R,Rn,C, etc.) all Cauchy sequences
converge.

We can generalize the ideas about sequences to series as for some
∑∞
k=0 ak,

the partial sums sn =
∑n
k=0 ak form a sequence. If the sn converge to some s,

we write ∞∑
k=0

ak = lim
n→∞

n∑
k=0

ak = lim
n→∞

sn = s.

Definition 2.1.3 (Absolute convergence). If for some A =
∑∞
k=0 ak, the series∑∞

k=0 |ak| converges, then A converges absolutely.

Definition 2.1.4 (Conditional convergence). If A =
∑∞
k=0 ak converges but∑∞

k=0 |ak| does not, then we say that A converges conditionally.

Note.
∑
ak converges if and only if for all ε > 0 there is some N ∈ N such that

for all m ≥ n > N , |
∑m
k=n ak| < ε (via Cauchy). The converse, however is not

true. Consider with m = n the sum
∑∞
k=0

1
k . For large k,

1
k → 0 but the sum∑∞

k=0
1
k does not converge.

Theorem 2.1.1 (Comparison Test). Fix some N ∈ N then

1. If |ak| < bk for all k ≥ N and if
∑
bk converges, then

∑
|ak| converges

as well.

2. If ak ≥ ck ≥ 0 for all k ≥ N and if
∑
ck diverges, then

∑
ak diverges as

well.
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Proof. Clear.

Recall that the finite geometric series
∑n
k=0 x

k equals xn+1−1
x−1 . Additionally,

when 0 ≤ x < 1, the infinite geometric series
∑∞
k=0 x

k = 1
1−x (with 00 := 1).

Also note that

lim sup
k→∞

ak := lim
k→∞

sup
n≥k

an, lim inf
k→∞

ak := lim
k→∞

inf
n≥k

an.

Theorem 2.1.2 (Root test). For some sequence (ak)k∈N, let L = lim supk→∞
k
√
|ak|.

1. If L < 1, then
∑
ak converges.

2. If L > 1, then
∑
ak diverges.

3. If L = 1, then the root test is inconclusive.

Proof. We prove each case separately.

1. For L < 1 choose M such that L < M < 1 and N ∈ N large enough
such that for all k ≥ N , k

√
|ak| < M =⇒ ∀k ≥ N, ak ≤ |ak| < Mk. As

M < 1, we know that
∑
Mk converges. Hence, by the comparison test

(2.1.1),
∑
ak converges as well.

2. For L > 1, for all ε > 0 there are infinitely many ak with k
√
|ak| > L− ε.

Now choose ε small enough such that L − ε > 1 =⇒ infinitely many
|ak| > 1, so the ak don’t converge to 0. Hence

∑
ak can’t converge.

3. For L = 1 we provide some counter examples:

a) ak = 1 =⇒ L = 1 but the sum diverges.

b) ak = (−1)k/k, then

lim
k→∞

(
1

k

)1/k

= lim
x→0

xx = lim
x→0

ex ln x = e0 = 1 =⇒ L = 1.

However, the sum converges (same applies to ak = 1
k2 ).

Theorem 2.1.3 (Ratio test). For (ak)k∈N,

1. lim supn→∞

∣∣∣ak+1

ak

∣∣∣ < 1 =⇒
∑∞

0 |ak| converges.

2. If there exists some N ∈ N such that for all k ≥ N,
∣∣∣ak+1

ak

∣∣∣ ≥ 1 =⇒∑∞
0 ak diverges.

Proof. We prove each part separately.
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1. As in the proof the the root test (2.1.2) there is some M ∈ R and N ∈ N
such that for all k ≥ N ,∣∣∣∣ak+1

ak

∣∣∣∣ < M < 1 =⇒ |aN+1| < M |aN |

=⇒ |aN+2| ≤M |aN+1| ≤M2|aN |

=⇒
...

=⇒ |aN+p| ≤Mp|aN |
=⇒ |ak| ≤Mk−N |aN |,∀k ≥ N.

The claim follows by the comparison test (2.1.1) and convergence of the
geometric series.

2. If there is some N such that for all k ≥ N ∈ N, |ak1 | ≥ |ak|, then ak do
not converge to 0. Hence

∑
ak can’t converge.

Note. The root test (2.1.2) is “better” than the ratio rest (2.1.3) as it looks at
the behavior of actual terms in the sequence and not the relative behavior of
successive terms (think of a sequence where every other term is zero, so we
can’t even apply the ration test). Hence if the ratio test implies convergence
then the root test will imply convergence as well, however, the converse of this
is false. That said, the ratio test is significantly easier to apply.

Theorem 2.1.4 (Liebniz condition). Let ak ∈ R with ak ≥ 0 and ak monoton-
ically decreasing such that limk→∞ ak = 0. Then

∑∞
k (−1)kak converges.

Proof. (advanced calculus)

Theorem 2.1.5 (Integral test). Let f : R+
0 7→ R+

0 be monotonically decreasing
and Riemann integrable with f ∈ R[0, b] for all b ∈ R+

0 . Then,∫ ∞
0

f(x) dx exists ⇐⇒
∞∑
k=0

f(k) converges.

Proof. (mainly from an advanced calculus homework)

k − 1 k k + 1

9



We see that

f(k + 1) ≤
∫ k+1

k

f(k) dk ≤ f(k)

=⇒
∫ N+1

1

f(k) dk ≤
N∑
k=1

f(x) ≤
∫ N

0

f(k) dk ≤
N−1∑
k=0

f(k).

From here, taking limN→∞ gives us convergence of series iff convergence of
integral.

Example 2.1.1.
∑∞
k=1

(
1
k

)p converges for p > 1.

Example 2.1.2.
∑∞
k=0 1/(k ln k) diverges as

∫
1

k ln k dk = ln ln k diverges.

Example 2.1.3.
∑∞
k=2 1/(k lnp k) converges for p > 1.

2.2 Rearrangements

Definition 2.2.1 (Rearrangement). If
∑∞

0 an is an infinite sum and there is
some bijection k : N 7→ N (the sequence (kn)n∈N includes every non-negative
integer), then we call

∑∞
0 ak(n) a rearrangement of

∑∞
0 an.

Recall. Conditional and absolute convergence (see beginning of section 2.1).

Theorem 2.2.1. If
∑
ai for ai ∈ C converges absolutely, then all rearrange-

ments also converge and have the same limit.

Proof. Since
∑
ai converges absolutely, we have that for all ε > 0 there exists

some N ∈ N such that for all m ≥ n ≥ N ,
∑m
n |ai| < ε.

Now choose M large enough such that 1, 2, 3, . . . , N are all included in
rearrangement k(1), k(2), k(3), . . . , k(N). For n > M and some large enough
m′ (with m′ = sup1≤i≤m ki),∣∣∣∣∣

n∑
1

ai −
n∑
1

ak(i)

∣∣∣∣∣ ≤
m′∑

i=N+1

|ai| < ε.

This implies that
∑
i ak(i) converges to the same limit as

∑
ai.

Theorem 2.2.2. If
∑
an for an ∈ C converges conditionally, then for all

A ∈ R ∪ {±∞} there exists a bijection k : N 7→ N such that
∑∞

0 ak(n) = A.

Proof. The proof is a bit involved; we don’t prove it here.

Example 2.2.1 (“Magic trick” from Adv. Calc).
∑ (−1)n

n+1 conditionally con-
verges to ln 2 (why?). However, we can rearrange it so that it converges to

10



1
2 ln 2:

∑ (−1)n

n+ 1
= 1− 1

2
+

1

3
− 1

4
± . . .

=

(
1− 1

2

)
+

(
1

3
− 1

6

)
− 1

4
± . . .

=
1

2
− 1

4
+

1

6
− 1

8
± . . .

=
1

2

(
1− 1

2
+

1

3
± . . .

)
=

1

2
ln 2.

2.3 Cauchy Product

For products of infinite sums, we have different “strategies” for multiplying
them. For instance:( ∞∑

ak

)( ∞∑
bk

)
= a0

∞∑
bk + a1

∞∑
bk + . . .

or
= a0b0 + (a1b0 + a0b1) + (a2b0 + a1b1 + a0b2) + . . .

Notice that the second one becomes particularly nice when we’re dealing with
power series (§ 2.4) as( ∞∑

akz
k

)( ∞∑
blz

l

)
= a0b0 + (a1b0 + a0b1)z + (a2b0 + a1b1 + a0b2)z2 + . . .

=

∞∑
n=0

(
n∑
k=0

akbn−k

)
zn

Definition 2.3.1 (Cauchy product). The Cauchy product of two sums
∑∞

ak
and

∑∞
bk is given by

∑∞
n=0 cn with cn =

∑n
k=0 akbn−k.

2.4 Power series

11



Chapter 3

Curves in Rn and Differential
Equations

3.1 Curves in Rn

Definition 3.1.1 (Curve). A curve in a metric spaceX is a continuous mapping
γ : I → X where I ⊂ R is an interval.

With X = Rn a curve γ is a vector valued map

γ(t) =


γ1(t)
γ2(t)
...

γn(t)

 ∈ Rn

where all γi(t) : I 7→ R are continuous.
Note that a curve refers to the whole map and not just the image produced

by the map and that two different curves can have the same image. Take, for
instance, the curves

γ1, γ2 : [0, 2π] 7→ R2 with γ1(t) =

(
cos t
sin t

)
and γ2(t) =

(
cos t
− sin t

)
.

Both of these curves are different but give us the same image (the unit circle)
as γ1 and γ2 “traverse” the circle in the anti-clockwise and clockwise direction
respectively.

γ1 : γ2 :

Recall (Dot product, Norm, Cauchy–Schwarz). The dot product of two vectors
x, y ∈ Rn is is given by

x · y :=

n∑
i=1

xiyi.

Also denoted by 〈x, y〉.

12



The norm of a vector x ∈ Rn gives us its “length” with

‖x‖ =
√
x · x =

√√√√ n∑
i=1

x2
i .

The Cauchy–Schwarz inequality relates the dot product of two vectors
x, y ∈ Rn to their norms:

|〈x, y〉| ≤ ‖x‖‖y‖

Definition 3.1.2 (Differentiability of γ). A curve γ : I → Rn is differentiable
at t ∈ I if

γ′(t) = lim
ε→0

γ(t+ ε)− γ(t)

ε

exists in Rn. We call γ′ the derivative of γ.

Note. • Above

γ(t+ ε)− γ(t)

ε
:=


1
ε [γ1(t+ ε)− γ(t)]

...
1
ε [γn(t+ ε)− γ(t)]

 .

Hence, γ is differentiable if and only if all γi are differentiable.

• When I is not open we consider the one-sided limits at the end points.

• γ differentiable =⇒ γ continuous

We can also express the derivative of γ in terms of an approximation by
an affine linear function. So if γ is differentiable at t ∈ I then there exists
Tn : R 7→ Rn such that

Tt(s) = γ(t) + (s− t)γ′(t)

is a unique straight line with Tt(t) = γ(t) and T ′t (t) = γ′(t). Tt is also the best
approximation of γ at t. Take s = t+ ε, then

‖γ(s)− Tt(s)‖ = ‖γ(s)− γ(t)− [Tt(s)− γ(t)]‖

=

∥∥∥∥εγ(t+ ε)− γ(t)

ε
− (s− t)γ′(t)

∥∥∥∥
= |ε|

∥∥∥∥γ(t+ ε)− γ(t)

ε
− γ′(t)

∥∥∥∥
So, limε→0

1
|ε|‖γ(s)− Tt(s)‖ = 0.

Hence, γ is differentiable at t if γ(s) = Tt(s) + Rt(s) where Rt(s) is the
remainder term with limε→0

1
ε |Rt(t+ ε)| = 0.

Example 3.1.1.

γ(t) =

(
cos(t)
sin(t)

)
: γ′(t) =

(
− sin(t)
cos(t)

)
:

13



Lemma 3.1.1 (“Speed limit”). Let γ : [a, b] → R be continuous on [a, b] and
differentiable on (a, b) with ‖γ′(t)‖ < c for all t ∈ (a, b), then

‖γ(b)− γ(a)‖ ≤ c|b− a|.

Proof. Let ∆ = γ(b) − γ(a) and f(t) = ∆γ(t) =
∑

∆γi(t) =⇒ f(t) is
differentiable and continuous as γ(t) is, and f ′(t) = ∆γ′(t).

From the mean value theorem, we know that there exists x ∈ [a, b] such that
f(b)− f(a) = (b− a)f(x) = (b− a)∆γ′(x).

Now,

0 ≤ ∆2︸︷︷︸
=‖∆‖2

= ∆(γ(b)− γ(a)) = f(b)− f(a)

= (b− a)∆γ′(x) ≤ (b− a)‖∆‖ ‖γ′(x)‖︸ ︷︷ ︸
<c

When ∆ = 0 the inequality is clear. Otherwise, ‖γ(b) − γ(a)‖ = ‖∆‖ ≤
(b− a)c.

Definition 3.1.3 (Integration of curves). Let γ : [a, b] 7→ Rn, with

γ(t) =

γ1(t)
...

γn(t)


and α : [a, b] 7→ R be monotonically increasing. Then γ ∈ R(α)[a, b] if and only
if for all i, γi ∈ R(α)[a, b] and

∫ b

a

γ dα =


∫ b
a
γ1 dα
...∫ b

a
γn dα


Note. Most properties from n = 1 also hold here. For instance, linearity of α, γ;∫
γ dα =

∫
γα′ dt for differentiable α and integrable α′; fundamental theorem;

etc.

Lemma 3.1.2. Let γ : [a, b]→ Rn with γ ∈ R(α)[a, b]. Then ‖γ‖ ∈ R(α)[a, b]

and
∥∥∥∫ ba γ dα

∥∥∥ ≤ ∫ ba ‖γ‖ dα.

Proof. (analogous to proof of Lemma 3.1.1.) First note that ‖γ‖ =
√∑

γ2
i ∈

R(α)[a, b] as sums, products, and square roots of integrable functions are
integrable.
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Next, define ∆ :=
∫ b
a
γ dα. Then

0 ≤ ‖∆‖2 =

n∑
1

∆i ·∆i

=

n∑
1

∆i

∫ b

a

γi dα

=

∫ b

a

∆γ dα

≤
∫ b

a

‖∆‖‖γ‖ dα = ‖∆‖
∫ b

a

‖γ‖ dα,

where the inequality follows from applying Cauchy-Schwarz. For ∆ = 0 the
proof is clear. Otherwise, for ∆ 6= 0, we have

‖∆‖ =

∥∥∥∥∥
∫ b

a

γ dα

∥∥∥∥∥ ≤
∫ b

a

‖γ‖dα.

3.2 Rectifiablity and curve length

The general idea behind computing the length of some curve γ : [a, b]→ Rn is
to first select some partition P = {x0, . . . , xn} with a = x0 ≤ x1 ≤ · · · ≤ xn = b
and then make the partitions finer and finer so that the sum of the straight line
segments

λ(γ,P) =

n∑
i=1

‖γ(xi)− γ(xi−1)‖

approaches the length of the curve.
Note. If P∗ ⊃ P is a refinement of P, then

λ(γ,P∗) ≥ λ(γ,P).

This follows directly from the triangle inequality.

Definition 3.2.1 (Rectifiable curves). For Λ(γ) = supP λ(γ,P) the curve γ is
rectifiable if Λ(γ) <∞. If this is indeed the case, we call Λ(γ) the length of the
curve γ.

Note. There exist many non-rectifiable curves.

Example 3.2.1 (The Koch snowflake). The Koch snowflake is obtained by first
taking a triangle and then replacing each straight line segment into a .
Iteratively doing this on all line segments produces the Koch snowflake

n = 1 n = 2 n = 3 . . . limn→∞
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Note that the total length at the end of the n-th iteration is given by 3
(

4
3

)n
Since limn→∞ 3

(
4
3

)n
=∞, the Koch snowflake has infinite length. See Home-

work B.6.2 for more details.

Example 3.2.2 (Space filling curves). A space filling curve is a curve γ :
[0, 1] 7→ [0, 1]2 that is continuous and surjective (these are usually limits of
repeated patterns.)

n = 1 n = 2 n = 3 . . . limn→∞

See Homework B.6.2 (bonus) for more details.

Theorem 3.2.1. If γ : [a, b] 7→ Rn is continuous differentiable, then γ is
rectifiable and Λ(γ) =

∫ b
a
‖γ′(t)‖ dt.

Proof.

λ(γ,P) =

n∑
1

‖γ(xi)− γ(xi−1)‖ =

n∑
1

∥∥∥∥∥
∫ xi

xx−i

γ′(t) dt

∥∥∥∥∥
≤

n∑
i=1

∫ xi

xi−1

‖γ′(t)‖ dt =

∫ b

a

‖γ′(t)‖ dt

=⇒ Λ(γ,P) ≤
∫ b

a

‖γ′(t)‖ dt <∞

=⇒ γ is rectifiable.

Next, we find P such that Λ(γ,P) ≥
∫ b
a
‖γ′(t)‖ dt− ε for all ε > 0. Using

uniform continuity of γ on [a, b] for fixed ε > 0 there exists a δ such that for al
s, t ∈ [a, b], |s− t| =⇒ ‖γ′(s)− γ′(t)‖ < ε. If we take P with |xi − xi−1| < δ
for all i = 1, . . . , n then∫ xi

xi−1

‖γ′(t)‖dt =

∫ xi

xi−1

(
‖γ(xi−1)‖+ ε

)
dt

= ‖γ′(xi)‖∆xi + ε∆xi

=

∥∥∥∥∥
∫ xi

xi−1

(
γ′(t) + γ′(xi−1)− γ′(t)

)
dt

∥∥∥∥∥+ ε∆xi

≤

∥∥∥∥∥
∫ xi

xi−1

γ′(t) dt

∥∥∥∥∥+

∥∥∥∥∥
∫ xi

xi−1

(
γ′(xi−1)− γ′(t)

)
dt

∥∥∥∥∥+ ε∆xi

≤
∫ b

a

‖γ′(t)‖ dt+ ε∆xi + ε∆xi

∑n
1=⇒
∫ b

a

‖γ′(t)‖ dt ≤ Λ(γ,P) + 2(b− a)ε.
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We saw that the length of a curve is given by

Λ(γ) =

∫ b

a

‖γ′(t)‖ dt.

A more general statement is also true: For any curve γ : [a, b] 7→ Rn that is
differentiable on (a, b) with the set {‖γ′(t)‖ : a ≤ t ≤ b} bounded and integrable
t 7→ ‖γ′(t)‖. Then Λ(γ) =

∫ b
a
‖γ′(t)‖ dt.

We denote the length of γ from a to x by Λ(γ, a, x). Note that

dΛ(γ, a, x)

dx
= ‖γ′(x)‖

is true by the fundamental theorem if γ′ is continuous.

Fractals When the fractal dimension of a curve is greater than one then the
curve is non-rectifiable. We get this fractal dimension by looking at the growth
in the number of circles required to cover the entire figure as we make these
circles smaller and smaller. The fractal dimension is then just the ratio at which
the number of circles required grows.

For a straight line the total number of circles required is proportional to the
size. Hence, its fractal dimension is one.

For a square, the fractal dimension is two as the number of circles required
grows quadratically.

For fractals, e.g., the Koch snowflake from the example above, the fractal
dimension is non-integer.

Lemma 3.2.2. If a function f : [a, b] 7→ R is continuous and monotone, then

the graph of f(t) given by Γ(t) =

(
t

f(t)

)
is rectifiable.

Proof. For any partition P and xi ∈ P, we have

‖Γ(xi)− Γ(xi−1)‖ =

∥∥∥∥( xi − xi−1

f(xi)− f(xi−1)

)∥∥∥∥ ≤ (xi − xi−1) + (f(xi)− f(xi−1))

Since the function is monotone, summing up for all i gives us

Λ(Γ,P) ≤ (b− a) + |f(b)− f(a)|

which is bounded for all P hence, supP Λ(Γ,P) exists and Γ is rectifiable.
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Definition 3.2.2 (Reparametrization). For a curve γ : [a, b] → Rn and a
function ϕ : [a′, b′] 7→ [a, b], the reparametrization of γ is given by (γ ◦ ϕ)(t) =
γ(ϕ(t)).

Example 3.2.3. For γ : [0, 2π] → R2 with γ(t) =

(
cos t
sin t

)
and ϕ : [0, 1] 7→

[0, 2π] with ϕ(t) = 2πt2 the reparametrization of γ with respect to ϕ is

(γ ◦ ϕ)(t) = γ(ϕ(t)) =

(
cos 2πt2

sin 2πt2

)
.

Lemma 3.2.3. If γ : [a, b]→ Rn is continuously differentiable and ϕ : [c, d]→
[a, b] is a diffeomorphism (a bijection with differentiable ϕ and ϕ−1) then
Λ(γ) = Λ(γ ◦ ϕ).

Proof.

Λ(γ) =

∫ b

a

‖γ′(t)‖ dt =

∫ ϕ−1(b)=d

ϕ−1(a)=c

‖γ′(ϕ(t))‖ϕ′(t) dt,

Λ(γ ◦ ϕ) =

∫ d

c

∥∥∥∥dγ(ϕ(t))

dt

∥∥∥∥ dt =

∫ d

c

‖γ′(ϕ(t))‖ϕ′(t) dt.

3.3 Differential equations

Motivation A differential equation relates a function to its derivative. Con-
sider the following examples:

Example 3.3.1. If x′(t) = λx(t) for λ ∈ R then the solution is x(t) = aeλt

with a ∈ R.

Example 3.3.2. x′(t) = tx(t) =⇒ x(t) = aet
2/2, a ∈ R.

Example 3.3.3. x′(t) = λx(t)
t with λ ∈ R then x(t) = atλ for a ∈ R.

Example 3.3.4. x′(t) = −x(t)2 =⇒ x(t) = 1
t−a , a ∈ R.

There are only few examples of differential equations were we can explicitly
find the solution. In most interesting cases we cannot find it explicitly. However,
these simple cases are important for more general results (e.g., think of the
Gronwall lemma, see Homework B.7.4). On the other hand, the theory of
differential equations is more concerned with the questions of existence and
uniqueness of solutions to general classes of equations, and with the properties of
such solutions — Are they global or local? What is their long time behavior? etc.
Here we only concern ourselves with first order autonomous (time-independent)
differential equations.

Definition 3.3.1 (Vector field, Flow line). A vector field in Rn is a map
v : Rn → Rn. A flow line in this vector field v is a continuously differentiable
map (a C1 map) γ : I → Rn with γ′(t) = v(γ(t)) where I is some interval.
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Definition 3.3.2 (Initial value problem). Given a vector field v, initial time
t0 ∈ R, initial position x0 ∈ Rn, is there a flow line γ : I → Rn such that
γ′(t) = v(γ(t)) with γ(t0) = x0? Is so, is the curve unique?

Note. The existence/uniqueness can be local i.e., we get solutions only on some
interval I ∈ R with t0 ∈ I. A global solution works for all t ∈ R.

Example 3.3.5. Consider the function

v(x) =

{
−1, x > 0

0, x ≤ 0
.

Heuristically, any solution will have a point where it is not differentiable (for
instance, the point (1, 0) in the graph below)1.

0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

Hence, the differential equation γ′(t) = v(γ(t)) doesn’t have a global solution.

1The vector field v(x) is shown in gray and the solution curve γ in blue.
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Example 3.3.6. Now consider the function v(x) = x
1
3 for some t0 and x0 = 0.

0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

For v(x) we can find many C1 solutions. For instance γ0(t) = 0, γ1(t) =(
2t
3

) 3
2 , γ3 = −

(
2t
3

) 3
2 , or even

γτ (t) =

0, t < τ

±
(

2(t−τ)
3

) 3
2

, t ≥ τ
.

Hence, solutions to v(x) in this case aren’t unique.

Definition 3.3.3 (Lipschitz condition). A vector field v satisfies the global
Lipschitz condition (or is Lipschitz continuous) with some Lipschitz constant
L > 0 if for all x0 ∈ Rn, x1 ∈ Rn

‖v(x1)− v(x0)‖ ≤ L‖x1 − x0‖.

A vector field v satisfies the local Lipschitz condition if for all x ∈ Rn there is
a neighborhood Ux such that for all x0, x1 ∈ Ux the Lipschitz condition holds
with some Lipschitz condition Lx.

Note. Local Lipschitz condition implies continuity and the global Lipschitz
condition implies uniform continuity.

Example 3.3.7. If v(x) = λx then ‖v(x0)− v(x1)‖ = λ‖x0− x1‖. Hence, v(x)
satisfies the global Lipschitz condition. Note that ‖aeλt − beλt‖ = eλt‖a− b‖,
which is true as an inequality for a large class of differential equations.

Theorem 3.3.1 (Picard–Lindelöf). Let v : Rn 7→ Rn be a vector field that
satisfies the global Lipschitz condition with Lipschitz constant L. Further let
t0 ∈ R and x0 ∈ R. Then there exists a unique continuously differentiable (i.e.,
C1) curve γ : R 7→ Rn with γ′(t) = v(γ(t)).

Furthermore, two solution curves γ1 and γ2 each with different initial data
(t0, x0) satisfy

‖γ1(t)− γ2(t)‖ ≤ eL|t−t0|‖γ1(t0)− γ2(t0)‖.
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Note. • Only continuity implies local existence of solutions but not neces-
sarily uniqueness.

• Only (local) Lipschitz continuity implies local existence and uniqueness.

• Non-autonomous (time-dependent) vector fields i.e., of the form v(x, t) im-
ply existence and uniqueness of solutions if the field satisfies the Lipschitz
condition in x and is continuous in t.

Proof sketch (3.3.1). The general idea is to fist integrate locally (
∫ s
t0
v(γ(t)) dt)

and then show the existence of γ =
∫ s
t0
v(γ(t)) dt and then extend this local

solution to all of R.
With ε = 1

2L, first define a space of curves

X = {γ : [t0, t0 + ε] 7→ Rn with γ(t0) = x0}

Note that the metric space (X, d) with

d(γ1, γ2) = ‖γ1 − γ2‖sup = sup
t∈[t0,t0+ε]

‖γ1(t)− γ2(t)‖

is a complete metric space.
Now define a map P : X 7→ X such that for s ∈ [t0, t0 + ε]

Pγ(s) =

∫ s

t0

v(γ(t)) dt+ x0 =⇒ Pγ ∈ X.

We are interested in a fixed point of P i.e., a curve γ∗ : [t0, t0 + ε] 7→ Rn
and γ∗(t0) = x0 with γ∗ = Pγ∗ . Because then

dγ∗

ds
=

dPγ∗(s)

ds
= v(γ∗(s)).

That is, γ∗ is a solution on [t0, t0 + ε].
Existence and uniqueness is provided by the Banach fixed point theorem

(see 3.3.2) (also called the contraction mapping principle).
We need to show that Pγ is indeed a contraction i.e.

‖Pγ1(s)− Pγ2(s)‖ ≤ · · · = L · ε · d(γ1, γ2) =
1

2
· d(γ1, γ2).

Then, this gives us a unique solution on [t0, t0 + ε]. Repeating this for other
intervals [t0 + ε, t0 + 2ε], . . . gives us the global solution.

The inequality (from the theorem) is proven by Grönwall’s inequality
(see 3.3.3).

Theorem 3.3.2 (Banach fixed point theorem). If (X, d) is a complete metric
space and f : X 7→ X a contraction (i.e., there exists r ∈ (0, 1) such that for all
x, x′ ∈ X, d(f(x), f(x′)) ≤ rd(x, x′)) then f has a unique fixed point x∗ ∈ X,
meaning that f(x∗) = x∗.

Proof idea. For x0 ∈ X define a sequence xn = f(xn−1). Then one can show
that xn → x∗.
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Lemma 3.3.3 (Grönwall’s inequality). If f is differentiable, then for some
c ∈ R,

f ′(t) ≤ cf(t) =⇒ f(t) ≤ ectf(0).

Proof. Was done in some bonus problem from Adv. Calc.

Note. For higher order ODEs x(n) = F (x, x′, x′′, . . . , x(n−1)) we can introduce
x1 = x, x2 = x′, x3 = x′′, . . . , xn = x(n−1) and then solve for

x′1
x′2
x′3
...
x′n

 =


x2

x3

x4

...
F (x1, . . . , xn)

 = V (x1, . . . , xn).

Theorem 3.3.4. If I, J are open intervals and f : I 7→ R, g : J 7→ R
are continuous with g(x) 6= 0 for all x ∈ J , then for all initial conditions
(t0, x0) ∈ I × J there is an open interval I0 ⊂ I containing t0 and a C1

function γ : I0 7→ R with γ(t0) = x0 that solves the differential equation
γ′(t) = f(t) · g(γ(t)).

Proof. See Homework B.7.3.
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Chapter 4

Basic Topology

4.1 Topology and continuity

Motivation We would like to study continuity and convergence form a more
abstract viewpoint. We do so by first generalizing concepts about open sets.

Example 4.1.1 (ε-balls in R). An ε-ball around a point x is defined as

Bε(x) = {x′ ∈ R : |x− x′| < ε} .

These satisfy the following properties:

• Arbitrary (even infinite) unions of open balls are open.

• Finite intersections are open (but infinite intersections might produce
closed intervals.).

Definition 4.1.1 (Topology). A topology on a set X is a collection τ = {Ui}i∈I
of subsets Ui ⊂ X where I is any index set such that

• ∅, X ∈ τ .

• For any I ′ ∈ I, also
⋃
i∈I′ Ui ∈ τ (arbitrary union).

• For any finite I ′ ∈ I,
⋂
i∈I′ Ui ∈ τ .

Elements of τ are called open sets and their complements are called closed sets.
The original set together with the topology (X, τ) is called a topological space.

Example 4.1.2 (Standard topology). The standard topology on a metric space
(X, d) can be generated using:

• ε-Balls Bε(x) = {x′ ∈ R : |x− x′| < ε} are defined as open sets.

• All open sets are arbitrary unions of Bε(x) (with possibly different ε and
x).

Example 4.1.3 (Trivial (in-discrete) topology). τ = {∅, X} is the coarsest
possible topology on X.

Example 4.1.4 (Discrete topology). τ = P(X) (the power set of X) is the
finest possible topology on X (here, all possible subsets of X are defined to be
open).
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Example 4.1.5. For X = {1, 2, 3}, τ = {∅, {1}, {2}, {1, 2, 3}} is not a topology
as {1} ∪ {2} = {1, 2} 6∈ τ . But τ = {∅, {1}, {1, 2, 3}} is a topology.

Definition 4.1.2. Let (X, τX) be a topological space and Y ⊂ X, then the
subspace topology on Y inherited/induced from X is

τY = {Z ⊂ Y such that Z = Ui ∩ Y,Ui ∈ τX}.

Example 4.1.6. The standard topology on circles, etc.

Note. In general τY ⊂ τX is not true.

Definition 4.1.3. Let (X, τ) be a topological space, then

• An open neighborhood of p ∈ X is any open set containing p.

• A neighborhood of p ∈ X is a set that contains an open neighborhood of
p.

Definition 4.1.4 (Hausdorff space). A topological space (X, τ) is called a
Hausdorff space if for any x, y ∈ X with x 6= y there are open sets U 3 x and
V 3 y such that U, V are disjoint.

Note. Any metric space (X, d) with the standard topology is Hausdorff. For
x, y take U = Bε(x), V = Bε(y) where ε = d(x, y)/2.

Example 4.1.7 (Zariski topology). The Zariski topology on an infinite set X
is defined such that a set U ⊂ X is open if and only if U = ∅ or X \U is finite.
The Zariski topology is not Hausdorff.

Example 4.1.8. The trivial topology (X, {∅, X}) is not Hausdorff provided
|X| ≥ 2.

Example 4.1.9. The discrete topology is Hausdorff.

Example 4.1.10 (“Funny” induced topology).

L R

YRYL

X

Y

τX = {∅, X, L,R}
τY = {∅ = Y ∩∅, Y = Y ∩X,YL = L ∩ Y, YR = Y ∩R}

Example 4.1.11 (R2 with std. topology). The induced topology on the circle
is just the open intervals on the circle (the bold part below). We find these by
looking at intersections of open balls Bε in R2 with the circle.

Bε
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Note. If we talk about subsets of a topological subspace, we always assume the
induced topology.

Definition 4.1.5 (Topological continuity). Let (X, τX) and (Y, τY ) be topo-
logical spaces, then a map f : X → Y is called continuous if for every open set
U ⊂ Y , the pre-image f−1(U) = {x ∈ X : f(x) ∈ U} is open.

Note. The definition above is often shortened as “pre-images of open sets are
open” or, alternatively, “pre-images of closed sets are closed.” On metric spaces
this definition is equivalent to the ε–δ definition of continuity (proved last
semester).

4.2 Compact sets

Motivation Compact sets allows us to conclude “finiteness” properties for
infinite sets. For instance, why do some functions, say 1

x on (0, 1), not have
a maximum? Why is it not uniformly continuous? On the other hand, why
do bounded functions like 1 − e−x for x ≥ 0 not have a maximum? With
compactness we can generalize notions of bounded and closed sets on R.

Definition 4.2.1 (Cover of a topological space). A cover of a topological space
(X, τX) is a collection of sets {Vi} with V ⊂ X such that

⋃
i Vi = X. A cover

is open if and only if all Vi are open.

Definition 4.2.2 (Compactness). A topological space (X, τX) is called compact
if every open cover has a finite sub-cover.

Note. In general, on metric spaces compactness = sequential compactness, i.e.,
every sequence in X has a sub-sequence that converges in X.

Theorem 4.2.1. If a topological space (X, τX) is compact, then every continu-
ous function f : X → R assumes a maximum and minimum.

Proof. We first show that f is bounded by contradiction. Assuming f is
unbounded, for all n ∈ Z construct

Un = {x ∈ X : |f(x)− n| < 2}.

This implies that all Un are open as they are pre-images of open sets and f is
continuous. Then, {Un : n ∈ Z} is an open cover of X. But if f is unbounded,
then no finite sub-cover of {Un} will cover X E Since we get a contradiction to
compactness, f has to be bounded.

Next, we set m = supx∈X f(x) ∈ R to show that there is some xm such that
f(xm) = m. We show this by contradiction by assuming that no such maximum
exists. Then for n ∈ Z set

Un =
{
x ∈ X : f(x) ∈ (m− 2−(n−1),m− 2−(n+1))

}
.

Then {Un, n ∈ Z} are an open cover (all f(x) < m by assumption). But, there
is no finite sub-cover as f(x) can be arbitrarily close to m (since m is the
supremum) E We again get a contradiction to compactness, i.e., such an xm
exists.

Hence, f assumes it’s maximum (for the minimum, we just need to prove
the result for −f).
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Alternative proof (using Theorems 4.2.2 and 4.2.3). X is compact and f : X 7→
R continuous then the image of f(x) is compact (bounded and closed) hence f
assumes its maximum and minimum.

Theorem 4.2.2 (Heine–Borel). A subset X ∈ R is compact if and only if X
is bounded and closed.

Proof. “ =⇒ ”. We first assume that f is not bounded and define

Un := {x ∈ X : |x− n| < 1}.

These are open sets of X (intersections of X with open sets in R; note that they
are not necessarily open sets in R). Then Un for n ∈ Z are open covers of X
but as X is not bounded, no finite cover exists E Contradiction to compactness.
Next assume that X is bounded but not closed. Then X not closed =⇒ there
is a limit point p of a sequence in X such that p ∈ Xc. Then define

Un = {x ∈ X : |x− p| ∈ (2−(n−1), 2−(n+1))}.

These Un-s are an open cover but no finite sub-cover exists E.
“⇐=”. Let {Ui} be an open cover of X and define the sequence

Xm = X ∩ [m,m+ 1].

Assuming one of the Xm-s cannot be covered by finitely may Ui, inductively
define sets

Yn =
[
an − 2−(n+1), an + 2−(n+1)

]
∩X

such that Yn cannot be covered by finitely many Ui-s. Here, the sequence an
is Cauchy; say limn→∞ an = a ∈ R. Since X is closed, we also have a ∈ X.
Since all Ui-s are open covers, there is some Uk with a ∈ Uk. Since this selected
Uk is also open, there is some N ∈ N such that for all n > N , Yn ⊂ Uk i.e.,
Y1 ⊃ Y2 ⊃ . . . Hence all Yn-s have a finite sub-cover E (contradiction to our
definition of Yn).

Theorem 4.2.3. The continuous images of any compact set is compact.

Proof. See Homework B.8.2.

Theorem 4.2.4. If a map f : X 7→ Y where (X, dX) and (Y, dY ) are metric
spaces with X compact is continuous, then it is also uniformly continuous.

Proof. See Homework B.9.2.

4.3 Connected sets

Definition 4.3.1 (Connectedness). A topological space (X, τ) is connected
if the only clopen (closed and open) subsets of X are X and ∅. A subset is
connected if it is connected in the subspace topology.

Note. A topological space (X, τ) is not connected if there is a separation /
decomposition of X = U ∪V where U, V are non-empty, disjoint, and open (and
thus also closed).
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Lemma 4.3.1. An interval I ⊂ R is connected if and only if it is an interval
or a point, i.e., for x, y ∈ I and x < z < y for some z then z ∈ I as well.

Proof. “⇐=”. Consider I = [a, b] and suppose that it is not connected. Then
there are non-empty open sets U, V (mutually disjoint) such that I = U ∪ V .

a c b

U V

Ũ Ṽ

J

Let a ∈ U, b ∈ V and without loss of generality take a < b (if not, then rename
U, V ). Take J = [a, b]. Then J can be separated with J = Ũ∪Ṽ with Ũ = U∩J
and Ṽ = V ∩ J . Set c = sup Ũ . Now, if c ∈ Ũ then also [c, c+ ε] ∈ Ũ (for some
small enough ε as Ũ is open in the subspace topology on J) =⇒ c cannot be
the supremum E. On the other hand, if c ∈ Ṽ then also [c− ε, c] ∈ Ṽ for small
enough ε. E.

“ =⇒ ”. Take some X ⊂ R. If X is an interval, then for all a, b ∈ X and
a < c < b, c ∈ X as well. Suppose X is not an interval and there exists some
c ∈ (a, b) such that c 6∈ X. Then define

X− = {x ∈ X : x < c}, X+ = {x ∈ X : x > c}.

In R, both X− and X+ are open as they are, respectively, the intersections of
the open sets (−∞, c) and (c,∞) with X. Hence they are open in X as well.
They are also disjoint and non-empty. As c 6∈ X, X = X− ∪ X+ =⇒ X is
disconnected E.

Lemma 4.3.2. The continuous image of a connected set is connected.

Proof. Let f : X → Y be continuous, X connected, and Y = f(X) (the image
of X under f). By definition f is surjective. Now, suppose that Y is not
connected, then there is a clopen set V such that V 6= ∅ and V 6= Y . Then the
pre-image f−1(V ) is clopen =⇒ X is not connected E.

Theorem 4.3.3 (Generalized intermediate value theorem). Let X be a con-
nected topological space and f : X → R a continuous function such that there
are a, b ∈ X with f(a) < 0 < f(b). Then there exists some c ∈ X with f(c) = 0.

Proof. Since X is connected and f continuous, from Lemma 4.3.2, the image
f(X) has to be connected. Now, from Lemma 4.3.1 the image f(X) is an
interval. Hence, there must be c ∈ X such that f(c) ∈ (f(a), f(b)), in particular
there is a c such that f(c) = 0.

Definition 4.3.2 (Path connectedness). A topological space (X, τ) is path
connected if for any x, y ∈ X can be connected by a continuous path γ : [0, 1]→
X such that γ(0) = x and γ(1) = y.

Lemma 4.3.4. Every path connected topological space is connected.

Proof. See Homework B.9.1
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Note. The converse to Lemma 4.3.4 is not true in general. For instance, the
“topologists’ sine curve” defined by

f(x) =

{
sin 1

x , x > 0

0, x = 0

has a graph that is connected but not path connected. See Homework B.8.4.
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Chapter 5

Differentiation in Rn

5.1 Definition of the derivative

Definition 5.1.1 (Differentiability in Rn). Let U ∈ Rn be open, then f : U →
Rm is called differentiable at p ∈ U if there is an affine map Tp : Rn 7→ Rm such
that

lim
h→0

‖f(p+ h)− Tp(p+ h)‖
‖h‖

= 0.

If f is differentiable for all p ∈ U , then f is simply called differentiable. If we
write the affine function as Tp(x) = A(x− p) + f(p) then

A = Df |p = Df(p) = f ′(p)

is called the derivative of f at p or the total derivative of f at p.

Note. We can alternatively write f(x) = A(x − p) + f(p) + rp(x), then f is
differentiable at p if and only if

lim
x→p
‖rp(x)‖
‖x− p‖

= 0.

Lemma 5.1.1. If f : Rn 7→ Rn is differentiable at p then it is also continuous
at p.

Proof. Clearly, f(p) and A(x− p) are continuous and

lim
x→p
‖rp(x)‖
‖x− p‖

= 0.

So also limx→p ‖rp(x)‖ = 0, i.e., also rp(x) is continuous at p.

Lemma 5.1.2. If f : Rn 7→ Rm is differentiable at p, then Df |p is unique.

Proof. (by contradiction)
Suppose the derivative is not unique and there are two distinct derivatives

with
T 1
p (x) = A1(x− p) + f(p), T 2

p (x) = A2(x− p) + f(p).
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Then for some h = x− p ∈ Rn we have

(A1 −A2)(h) = ‖(f(p+ h)− f(p)− r1(h+ p))− (f(p+ h)− f(p)− r2(h+ p))‖
= ‖r2(h+ p)− r1(h+ p)‖
≤ ‖r1(h+ p)‖+ ‖r2(h+ p)‖.

Then limh→0
‖(A1−A2)(h)‖

‖h‖ = 0 if and only if f is differentiable at p. Choose
u ∈ Rn (u 6= 0) and set h = tu for some non-zero t ∈ R, then

‖(A1 −A2)h‖
‖h‖

=
‖(A1 −A2)(tu)‖

‖tu‖
=
‖(A1 −A2)(u)‖

‖u‖

should go to zero as t tends to zero. But that can only be true for

A1u = A2u =⇒ A1 = A2.

5.2 Directional and partial derivatives

Definition 5.2.1 (Directional derivative). A function f : U 7→ Rm is differ-
entiable in at p ∈ U ⊂ Rn in the direction of the unit vector u ∈ Rn if the
limit

lim
t→0,t>0

fi(p+ tu)− fi(p)
t

exists for each component fi of f . The limit is called the directional derivative
and is denoted by Duf(p).

Definition 5.2.2 (Partial derivative). The partial derivative of some function
f differentiable at p is the directional derivative in the direction of the standard
basis vectors ej . The j-th partial derivative is denoted by

Dejf(p) = Djf(p) =
∂f(p)

∂xj
=


∂f1(p)
∂xj
...

∂fn(p)
∂xj

 .

Example 5.2.1. Consider the function f : R2 7→ R2 defined by:

f(x1, x2) =

(
x2

1 + x1x2

2x1 − x2
2

)
.

The the partial derivatives are

∂f

∂x1

=

(
2x1 + x2

2

)
,

∂f

∂x2

=

(
x1

−2x2

)
.

Theorem 5.2.1. If f : U 7→ Rm for U ⊂ Rn is differentiable at p ∈ U then
all directional derivatives exist. And for the unit vector u ∈ Rn the directional
derivative is given by

Df |p︸ ︷︷ ︸
∈L(Rn,Rm)

· u︸︷︷︸
∈Rn

.

In particular, ∂fi
∂xj

= (Df)i,j at p.
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Example 5.2.2. For the function from Example 5.2.1,

Df =

(
2x1 + x2 x1

2 −2x2

)
.

Proof. (Theorem 5.2.1)
Since f is differentiable at p,

lim
h→0

‖f(p+ h)− f(p)−Df |p · h‖
‖h‖

= 0

=⇒ lim
t→0,t>0

‖f(p+ tu)− f(p)−Df |p · tu‖
‖tu‖

= 0

=⇒ lim
t→0,t>0

∥∥∥∥f(p+ tu)− f(p)

t
−Df |p · u

∥∥∥∥ = 0

=⇒ lim
t→0,t>0

f(p+ tu)− f(p)

t
= Df |p · u.

Note. f partially differentiable at x with continuous partial derivatives ⇐⇒
f totally differentiable and continuous =⇒ f totally differentiable =⇒ f
differentiable in all directions around x =⇒ f partially differentiable at x.

Theorem 5.2.2. Let f : U → Rm where U ⊂ Rn is open. Then f is partially
differentiable at all p ∈ U with ∂f(p)

∂xj
continuous for all 1 ≤ j ≤ n if and only if

f is totally differentiable at all p with Df |p continuous.

Proof. “⇐=”. Fix p ∈ U and suppose f is differentiable at p with Df |p
continuous i.e., for all ε > 0 there exists δ > 0 such that ‖p − q‖ < δ =⇒
‖Df |p −Df |q‖ < ε. Then from Theorem 5.2.1 all partial derivatives exist and∣∣∣∣∣ ∂fi∂xj

(p)− ∂fi
∂xj

(q)

∣∣∣∣∣ = ‖(Df |p)i,j − (Df |q)i,j‖

= ‖ei(Df |p −Df |q)ej‖
≤ ‖Df |p −Df |q‖ ≤ ε.

Hence the partial derivatives ∂f
∂xj

are continuous at p.
“ =⇒ ”. We show that f is totally differentiable. This implies that (Df)i,j =

∂fi
∂xj

. Further continuity of (Df)i,j for all i, j implies continuity of (Df).
Now consider a component fi : U 7→ R and fix p ∈ U, ε > 0. Then continuity

of ∂fi
∂xj

implies that there is some δ > 0 such that for q ∈ U and

q ∈ Bδ(p) =⇒

∣∣∣∣∣ ∂fi∂xj
(p)− ∂fi

∂xj
(q)

∣∣∣∣∣ < ε

mn

for all 1 ≤ i ≤ n, 1 ≤ j ≤ m.
Now, let h ∈ Rm with ‖h‖ < δ and h =

∑m
1 hjej . Define v0 = 0, v1 =

h1e1, v2 = v1 + h2e2, . . . i.e, vk =
∑k

1 hjej . Then

f(p+ h)− f(p) =

m∑
1

(fi(p+ vj)− fi(p− vj−1)) .
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Note that 0 ≤ ‖vj‖ ≤ ‖h‖ > δ so the line between in (p+ vj) and (p+ vj−1) is
still in Bδ(p). Using the one dimensional mean value theorem on the sum,

fi(p+ vj)− fi(p+ vj−1) = fi(p+ vj−1 + hjej) = fi(p+ vj−1)

= hj
∂fi
∂xj

(p+ vj−1 + cjhjej)︸ ︷︷ ︸
∈Bδ(p)

for some cj ∈ [0, 1]. Plugging this back into the initial inequality,∣∣∣∣∣fi(p+ vj)− fi(p+ vj−1)− hj
∂fi
∂xj

(p)

∣∣∣∣∣
= |hj |

∣∣∣∣∣ ∂fi∂xj
(p+ vj−1 + cjhjej)−

∂fi
∂xj

(p)

∣∣∣∣∣
≤ |hj |

ε

mn

=⇒

∣∣∣∣∣fi(p+ vj)− fi(p+ vj−1)−
m∑
1

hj
∂fi
∂xj

(p)

∣∣∣∣∣
≤ ε

nm

n∑
1

‖h‖ ≤ ε

m
‖h‖

=⇒ ‖f(p+ h)− f(p)−Df(p) · h‖
‖h‖

≤
m∑
1

∣∣∣fi(p+ h)− fi(p)−
∑n

1
∂fi
∂xj

(p) · hj
∣∣∣

‖h‖

≤
m∑
1

ε

m
= ε.

Hence f is differentiable at p with (Df)i,j(p) = ∂fi
∂xj

(p).

5.3 The gradient

Definition 5.3.1. Let f : U 7→ R where U ⊂ Rn is open and f differentiable,
then

∇f := Df =


∂f
∂x1

...
∂f
∂xn


is called the gradient (∇f the gradient or nabla f)1.

Recall (Maxima/Minima). • For some function f , if there exists a neigh-
borhood V around p such that f(p) ≥ f(q) for all q ∈ V then p is called a
local maxima of f (it’s the local minima when f(x) ≤ f(q) for all q ∈ V ).

1Since this came up in class: ∇ is called “nabla” as its shape resembles that of a Phonecian
harp called (surprise!) “Nabla”. The Modern Greek term is anadelta as ∇ is just an inverted
(“ana–”, opposite) delta.
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• If f(p) ≥ f(q) for all q on which the function is defined (the domain of f)
then p is the global maximum (it’s the global minimum when f(p) ≤ f(q)).

Theorem 5.3.1. Let f : U → R with U ⊂ Rn open and f differentiable. If f
has local maxima / minima at p ∈ U then ∇f = 0. If ∇f 6= 0 then ∇f(p)

‖∇f(p)‖ is
the unit vector along which f has the largest directional derivative with value
‖∇f(p)‖.

Proof. Consider ∇f 6= 0 then the directional derivative in the direction of unit
vector u is

Df · u = ∇f · u = ‖∇f‖‖u‖ cosϕ = ‖∇f‖ cosϕ.

where ϕ = ^(∇f, u) the angle between ∇f and u. Clearly, ∇f · u is maximum
when cosϕ = 1 =⇒ ϕ = 0. Then ∇f · u = ‖∇f‖ and u = ∇f

‖∇f‖ . Also, when
∇f 6= 0 there is a direction along which f increases and opposite to which f
decreases. Hence f cannot have an extremum at that point.

5.4 Higher order derivatives

Definition 5.4.1. A function f : U → Rn is called of class Ck (or f ∈ Ck or
f ∈ Ck(U → Rn)) if all combinations of k-th partial derivatives exist and are
continuous.

Note. We write ∂
∂xj
· ∂f∂xi as ∂2f

∂xj∂xi
. In general, the partial derivatives are not

commutative! Generally, ∂2f
∂xj∂xi

6= ∂2f
∂xi∂xj

, see Homework B.11.2.

Theorem 5.4.1 (Schwarz/Clairaut’s theorem2). If f : U 7→ Rm with U ⊂ Rn
open and f ∈ C2(U → Rm) then

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
.

This is used to prove the more general result

Theorem 5.4.2. If f : U → Rm with U ⊂ Rn open and f ∈ Ck(U → Rm)
then, all partial derivatives up-to the k-th order commute.

For the proof of Theorem 5.4.1 we need the following lemma.

Lemma 5.4.3. Let f : U → R and U open in R2 such that ∂f
∂x ,

∂2f
∂y∂x exist in

U .

Let Q ⊂ U be a rectangle with sides parallel to the coordinate axes with its
opposite corners given by (p, q) and (p+ h, q + k) (k, h 6= 0). Set

∆(f,Q) = f(p+ h, q + k)− f(p, q + k)− f(p+ h, q) + f(p, q).

Then there exists an interior point of Q with

∆(f,Q) = hk
∂2f

∂y∂x
(x, y)

2more precisely, Clairaut’s theorem on equality of mixed partials
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Proof. Define u(t) := f(t, q + k)− f(t, q) for t ∈ [p, p+ h] given h > 0. Then,
for some p < x < p+ h it follows from the intermediate value theorem that

∆(f,Q) = u(p+ h)− u(p)

= hu′(x)

= h

(
∂f

∂x
(x, q + k)− ∂f

∂x
(x, q)

)
= hk

(
∂

∂y

∂

∂x
f(x, y)

)
for q < y < q + k

where we obtain the last step by applying the intermediate value on the second
variable.

This allows us to prove Theorem 5.4.1.

Proof (Clairaut; Theorem 5.4.1). We consider the case when m = 1 (otherwise,
take each component separately and n = 2 (or, keep all but two variables fixed)).
Choose p, q ∈ U and set A := ∂2f

∂y∂x (p, q).
For some (arbitrary) fixed ε > 0 choose Q as in Lemma 5.4.3. Then with

h, k > 0 chosen small enough, we get from continuity that for all (x, y) ∈ Q∣∣∣∣A− ∂2f

∂y∂x
(x, y)

∣∣∣∣ < ε

5.4.3
=⇒

∣∣∣∣A− ∆(f,Q)

hk

∣∣∣∣ < ε

k→0
=⇒

∣∣∣∣∣A−
∂f
∂y (p+ h, q)− ∂f

∂y (p, q)

h

∣∣∣∣∣ < ε

h→0
=⇒

∣∣∣∣A− ∂2f

∂x∂y
(p, q)

∣∣∣∣ < ε.

Definition 5.4.2 (Hessian Matrix). Let f : U 7→ R and U ⊂ Rn open and
f ∈ C2. The Hessian Matrix (or just the Hessian) is the matrix H of second
derivatives whose terms are given by Hi,j = ∂2f

∂xi∂xj
.

Note. Theorem 5.4.1 implies that the Hessian is symmetric.

Theorem 5.4.4 (Second order Taylor). Let f : U → R with U ⊂ Rn open and
f ∈ C2. Let p ∈ U and h ∈ Rn such that p + th ∈ U for all t ∈ [0, 1]. If we
write

f(p+ h) = f(p) + (Df)(p) · h+
1

2
hT ·Hf (p) · h︸ ︷︷ ︸

1
2

∑
i,j hi·(Hf (p))i,j ·hj

+rp(h)

then limh→0
|rp(h)|
‖h‖2 = 0.
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Proof. Define g : [0, 1]→ R such that g(t) = f(p+ th) since f ∈ C2 also g ∈ C2.
Then, from one-dimensional Taylor expansion around 0, we have

g(1) = g(0) + g′(0) +
1

2
g′′(τ) for some τ ∈ [0, 1].

Now from the definition of g(t) we have

g(1) = f(p+ h),

g(0) = f(p),

g′(t) = (Df)(p+ th) · h =

n∑
i=1

∂f

∂xi
(p+ th)hi,

g′′(t) =
d

dt

n∑
i=1

∂f

∂xi
(p+ th)hi =

n∑
i=1

hi

(
D
∂f

∂xi

)
(p+ th) · h

=
∑
i,j

hi
∂2f

∂xi∂xj
(p+ th)hj = hT ·Hf (p+ th) · h.

Plugging these into the expansion of g(1),

f(p+ h) = f(p) + (Df)(p+ th) +
1

2
hT ·Hf (p+ τh) · h.

Hence, for the required rest term rp(h),

rp(h) = f(p+ h)− f(p)− (Df)(p) · h− 1

2
hT ·Hf (p) · h

=
1

2
hT ·Hf (p+ τh) · h− 1

2
hT ·Hf (p) · h

=
1

2
hT · (Hf (p+ τh)−Hf (p)) · h

=⇒ |rp(h)| ≤ 1

2
‖h‖2 ‖Hf (p+ τh)−Hf (p)‖ .

Since f ∈ C2, Hf is continuous. That is for given ε and ‖h‖ < δ,

|rp(h)|
‖h‖2

=
1

2
‖Hf (p+ τh)−Hf (p)‖ < ε

2
.

Hence, limh→0
|rp(h)|
‖h‖2 = 0 as stated.

Theorem 5.4.5. Let f : U → Rn with U open be a C2 function with ∇f(p) =
Df(p) = 0 for some p ∈ U . Then

• if Hf (p) is positive definite i.e., for all h ∈ Rn with h 6= 0, hT ·Hf (p)·h > 0,
then f has a (local) minimum at p.

• if Hf (p) is negative definite i.e., for all h ∈ Rn with h 6= 0, hT ·Hf (p)·h < 0,
then f has a (local) maximum at p.

Proof. See Homework B.12.2.
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Note. When a matrix A is symmetric then it is positive definite if and only if
all of its eigenvalues λk > 0 as

A =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

 =⇒ hT ·A · h =

n∑
1

λk|hk|2.

5.5 Inverse function theorem

Motivation We’re interested in conditions under which some function f :
W → Rn where W ⊆ Rn is invertible. We know that for n = 1, if the
continuously differentiable function f with some f ′(p) 6= 0 then f ′(p) is invertible
in some neighborhood of p. This implies that f is invertible in the neighborhood
of p and f−1 is continuously differentiable. And hence,

(f−1)′(f(p)) =
1

f ′(p)

holds. Invertibility of f ′(p) is the crucial condition here. If possible, we would
like to generalize this to Rn.

Theorem 5.5.1 (Inverse function theorem). Let f : W → Rn be a C1 function
with W ⊆ Rn open. If the n × n matrix Df(p) is invertible for some p ∈ W
then

1. There are open neighborhoods U of p and V of f(p) such that the restriction
of the function to U, f |U : U → V is bijective and thus f |U invertible.

2. If g is the inverse of f |U i.e., g(f |U (x)) = x for all x ∈ U then g ∈ C1.

Put differently, theorem 5.5.1 states that y = f(x1, . . . , xn) can be solved for
x1, . . . , xn in terms of y1, . . . , yn if x and y lie in small enough neighborhoods
U and V respectively.

Note (Diffeomorphism). If a Ck function f : W → V has an inverse f−1 with
f−1 ∈ Ck, then f is called a Ck-diffeomorphism. Further if p ∈ W has a
neighborhood U such that the restriction f |U is a Ck-diffeomorphism, then f is
called a local Ck-diffeomorphism.

Note (Convexity). A set U is convex if and only if all points on the straight
line between any p, q ∈ U are also in U .

A complete proof of Theorem 5.5.1 requires two smaller lemmas which we
now prove.

Lemma 5.5.2. Let f : U → Rn with U ⊆ Rn open and convex. If f is
differentiable and ‖Df(x)‖ ≤M for some M > 0 and x ∈ U , then

‖f(p)− f(q)‖ ≤M‖p− q‖

for all p, q ∈ U .
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Proof. Since U is convex, some curve γ : [0, 1]→ Rn defined by γ(t) = tq+ (1−
t)p is in U whenever p, q ∈ U . Let g(t) = f(γ(t)). Then,

f(q)− f(p) = f(γ(1))− f(γ(0))

= g(1)− g(0)

=

∫ 1

0

g′(t) dt (integrated component wise);

g′(t) = f ′(γ(t)) · γ′(t) = Df(γ(t)) · (q − p)

=⇒ ‖f(q)− f(p)‖ ≤
∫ 1

0

‖g′(t)‖dt

≤ ‖q − p‖
∫ 1

0

‖Df(γ(t))‖︸ ︷︷ ︸
≤M

dt

≤M‖q − p‖
∫ 1

0

dt = M‖q − p‖.

Lemma 5.5.3. 1. If A,B : Rn → Rn are linear maps where A is invertible
and ‖A − B‖ < 1

‖A−1‖ , then B is invertible as well (i.e., the set of all
invertible maps is open).

2. Taking the inverse map is a continuous operation i.e., limB→AB−1 =
A−1.

Proof (heuristics). We would like to use a geometric series to show that B is
invertible. In particular, we compute the inverse using3

B−1 =
1

A−A+B

=
1

A(I − (I −A−1B))

=

( ∞∑
0

(I −A−1B)n

)
A−1

Proof. 1. Using the given bound ‖A−B‖ < 1
‖A−1‖ , we get

‖1−A−1B‖ = ‖A−1(A−B)‖ ≤ ‖A−1‖‖A−B‖ < 1.

Hence, the sum
N∑
k=0

(1−A−1B)k

is a Cauchy sequence and converges as N →∞.

3 Note that I = 1 = 1Rn×Rn = idn×n all denote the identity matrix of size n.
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Then,
N∑
k=0

(I −A−1B)k
(
I − (I −A−1B)

)
︸ ︷︷ ︸

A−1B

=

N∑
0

(I −A−1B)k −
N∑
0

(I −A−1B)k+1

=

N∑
0

(I −A−1B)k −
N+1∑

1

(I −A−1B)k

= I − (I −A−1B)N+1.

Now, if we consider the norm of this sum,∥∥∥∥∥
N∑
0

(I −A−1B)kA−1B − I

∥∥∥∥∥ = ‖(I −A−1B)N+1‖

≤ ‖I −A−1B‖︸ ︷︷ ︸
<1

N+1 N→∞−−−−→ 0.

=⇒
∞∑
k=0

(I −A−1B)kA−1

︸ ︷︷ ︸
B−1

B = I.

Hence, B is invertible.

2. If B → A then A−1B → I as multiplication by a fixed A−1 is continuous.
Then

lim
B→A

∞∑
k=0

(I −A−1B)k A−1B︸ ︷︷ ︸
→I

= I, i.e., lim
B→A

∞∑
k=0

(I −A−1B)k = I,

so

lim
B→A

B−1 =

∞∑
k=0

(I −A−1B)kA−1 = A−1.

Proof (Theorem 5.5.1). 1. Let A = Df(p) and set λ = 1
2‖A−1‖ . Since f is

continuously differentiable at p, there exists an open and convex neigh-
borhood of p such that

‖Df(p)−Df(x)‖ < λ ∀x ∈ U. (∗)

Since we want to show that the function is bijective on some restriction,
we first show injectivity i.e., for some fixed y ∈ Rn we want at most one
x such that f(x) = y.
Define ϕy : W → Rn where ϕy(x) = x + A−1(y − f(x)) (this choice of
ϕy is motivated by Newton’s method where we use the iteration scheme
x̃ = x+ f(x̃)−f(x)

f ′(x) = ϕy(x)). Hence

f(x) = y ⇐⇒ φy(x) = x.

38



That is, x is a fixed point of ϕy.
Now,

Dϕy(x) = 1−A−1Df(x) = A−1(A−Df(x))

=⇒ ‖Dϕy(x)‖ ≤ ‖A−1‖︸ ︷︷ ︸
= 1

2λ

‖A−Df(x)‖︸ ︷︷ ︸
<λ

<
1

2

With Lemma 5.5.2 this implies that

‖ϕy(x1)− ϕy(x2)‖ ≤ 1

2
‖x1 − x2‖. (∗∗)

Hence, ϕy(x) is a contraction =⇒ ϕy(x) has at most one fixed point
(assuming two fixed points x1, x2 we get ϕy(x1) = x1, ϕy(x2) = x2 =⇒
‖ϕy(x1)− ϕy(x2)‖ = ‖x1 − x2‖ ≤ 1

2‖x1 − x2‖ E which contradicts (∗∗)).
Taking this fixed point x, we have ϕy(x) = x =⇒ f(x) = y for at most
one x. Hence, f |U is injective.
We would now like to show that V = f(U) is open.
To get the existence of the fixed point we need to find a complete metric
space X such that ϕy : X → X i.e., we must find X closed so that we can
apply the Banach fixed point theorem.
Let f(U) = V and pick q ∈ V then there is a unique p such that f(p) = q
(from injectivity). Now, define B = Br(p) with r so small that B ⊂ B̄ ⊂ U .
We show that if we choose y ∈ Brλ(q) then y ∈ V , i.e., V is open.
Let y ∈ Brλ(q) then,

‖ϕy(p)− p‖ = ‖p+A−1(y − f(p))− p‖
= ‖A−1(y − f(p))‖
≤ ‖A−1‖︸ ︷︷ ︸

= 1
2λ

‖y − f(p)‖︸ ︷︷ ︸
<rλ

<
r

2
.

Set V = f(U) and pick q ∈ V such that there is a unique p with f(p) = q
(we get this from injectivity at q). Now, define B = Br(p) with r so small
such that B̄ ⊂ U . We show that if y ∈ Brλ(q) =⇒ y ∈ V , so that V is
open. For any x ∈ B̄

‖ϕy(x)− p‖ ≤ ‖ϕy(x)− ϕy(p)‖ − ‖ϕy(p)− p‖

≤ 1

2
‖x− p‖ − ‖A−1‖‖y − f(p)‖

≤ 1

2
r +

1

2λ
rλ = r.

As B̄ is a complete metric space and ϕy(x) ∈ B̄ =⇒ ϕy : B̄ → B̄ is a
contraction. Then from the Banach fixes point theorem there is a unique
fixed point with ϕy(x) = x =⇒ f(x) = y and

y ∈ f(B̄) ⊂ f(U) = V.
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2. We show that g = f−1 : V → U is C1. First choose y, y + k ∈ V then
there are x, x+ h ∈ U such that f(x) = y and f(x+ h) = y + k. From
Lemma 5.5.3, since

‖Df(x)−Df(p)‖ < 1

2‖Df(p)‖

then Df(x) has an inverse T = (Df(x))−1. Then

g(y + k)− g(y)− Tk = x+ h− x− Tk
= h− Tk
= TT−1h− T (f(x+ h)− y)

= −T (f(x+ h)− f(x)−Df(x) · h)

=⇒ ‖g(y + k)− g(y)− Tk‖
‖k‖

≤ ‖T‖‖f(x+ h)− f(x)−Df(x) · h‖
‖k‖

.

Now, if we somehow relate h and k we’re done. So, consider

ϕy(x+ h)− ϕy(x) = x+ h+A−1(y − f(x+ h))

− (x+A−1 (y − f(x))︸ ︷︷ ︸
=0

)

= h+A−1(y − f(x+ h))

= h−A−1k;

=⇒ ‖h−A−1k‖ = ‖ϕy(x+ h)− ϕy(x)‖

≤ 1

2
‖h‖;

=⇒ ‖h‖ ≤ ‖h−A−1k +A−1k‖
≤ ‖h−A−1k‖︸ ︷︷ ︸

≤ 1
2‖h‖

+‖A−1k‖

=⇒ ‖h‖ ≤ 2‖A−1k‖ ≤ 2
1

2λ
‖k‖ =

‖k‖
λ

;

=⇒ ‖g(y + k)− g(y)− Tk‖
‖k‖

≤ ‖T‖
λ
· ‖f(x+ h)− f(x)0Df(x) · h‖

‖h‖
.

Clearly, as k → 0, k → 0 as well. Hence, the right hand side approaches
zero since f ∈ C1. Then, g is differentiable at y and Df(y) = (Df(x))−1.
Finally

• x 7→ Df(x) continuous as f ∈ C1.

• A 7→ A−1 continuous from Lemma 5.5.3.

• y 7→ x continuous as g is differentiable (and hence continuous).

Therefore y 7→ Dg(y) is continuous and g ∈ C1.
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5.6 Implicit function theorem

Motivation We are given a set of n equations in n unknowns

f1(x1, . . . , xn, y1, . . . , ym) = 0,

f2(x1, . . . , xn, y1, . . . , ym) = 0,

...
fn(x1, . . . , xn, y1, . . . , ym) = 0,

and we would like to solve for all xk. In particular, we are interested in solutions
of the form x1(y1, . . . , ym), . . . , xn(y1, . . . , ym). This might not be possible
globally, so we want to see if local solutions to the equations exist.

Example 5.6.1. Consider the function f(x, y) = x2 + y2 − 1 for x, y ∈ R.
Solving for f(x, y) = 0 is the same as solving for x2 + y2 = 1. Since this
equation describes a circle, we won’t have a global solution. However, it should
be possible to locally solve for x(y) in open neighborhoods (except possibly at
x = 0). We know that

∂f

∂x
= 2x,

∂f

∂y
= 2y.

Note that when x = 0,

∂f

∂x

∣∣∣∣
(x=0,y)

= 0 =⇒ ∂f

∂x
is not invertible.

Note. We denote the tuple of xk-s with x = (x1, . . . , xn) ∈ Rn. Similarly,
y = (y1, . . . , ym) ∈ Rm and (x, y) ∈ Rm+n.

Theorem 5.6.1. Let E ⊂ Rm+n be open. Let f : E → Rn be C1 such that
f(p, q) = 0 for some (p, q) ∈ E.

Assuming ∂f
∂x (p, q) is invertible there are open sets U ⊂ Rm+n,W ⊂ Rn with

(p, q) ∈ U, q ∈W such that

• For all y ∈W there is a unique x such that (x, y) ∈ U and f(x, y) = 0.

• Defining this x := g(y), then g : W → Rm is C1, g(q) = p, and f(g(y), y) =
0 for all y ∈W .

• The derivative of g at q is given by

Dg(q) = −
(
∂f

∂x
(p, q)

)−1
∂f

∂y
(p, q). (?)

Note. At (p, q),

(?) =⇒
n∑
j=1

∂fi
∂xj
· ∂gj
∂yk

= − ∂fi
∂yk

.

Example 5.6.2. Continuing with Example 5.6.1, f(x, y) = x2 + y2 − 1, x =

g(y) =
√

1− y2. then implicitly we get

∂g

∂y
= − 1

2x
2y = −y

x
= − y

g(y)
.
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Computing the derivative directly we get

∂g

∂y
= − 2y

2
√

1− y2
= − y√

1− y2
= − y

g(y)
.

Proof (Theorem 5.6.1). We define F : E → Rn+m by F (x, y) = (f(x, y), y).
Then, F (p, q) = (0, q) and

DF (p, q) =

(∂f
∂x

∂f
∂y

0 1

)
det (DF )(p, q) = det

(
∂f

∂x

)
· det1 6= 0. (by assumption)

=⇒ DF (p, q) is invertible.

By the intermediate value theorem, there are open neighborhoods U of (p, q)
and V of F (p, q) = (0, q) such that F : U → V is a diffeomorphism with a C1

inverse G : V → U . Setting

W := {y ∈ Rm : (0, y) ∈ V }

we get q ∈W =⇒ W is open. If y ∈W then (0, y) ∈ V , so (0, y) = F (x, y) for
some (x, y) ∈ U and f(x, y) = 0.

From the injectivity of F we know that this x is unique, hence, this procedure
defines a unique g : W → Rn such that g(y) is the unique x ∈ Rn defined above.

With (x, y) ∈ U and f(g(y), y) = 0 ,since (p, q) ∈ U then f(p, q) = 0 and
consequently g(q) = p.

Now, we just need to show that g ∈ C1. Use G(0, y) = (g(y), y) =⇒ G ∈ C1

and use (?) with the chain rule for (g(y), y).

42



Appendix A

Schedule

Feb. 05, 2018 Riemann–Stieltjes Integral (definition)

Feb. 06, 2018 Riemann–Stieltjes Integral (refinement of partitions, existence
criterion)

Feb. 12, 2018 Riemann–Stieltjes Integral (continuous functions, finitely many
discontinuities, basic properties)

Feb. 13, 2018 Riemann–Stieltjes Integral (compositions, change of variables)

Feb. 19, 2018 Riemann–Stieltjes Integral (change of variables, fundamental
theorem)

Feb. 20, 2018 Riemann–Stieltjes Integral (integration by parts, improper
integrals, uniform convergence and integration and differentiation)

Feb. 26, 2018 Convergence, Series, Sequences (review, convergence tests)

Feb. 27, 2018 Convergence, Series, Sequences (more convergence tests, rear-
rangements)

Mar. 05, 2018 Power Series (Cauchy product, radius of convergence; deriva-
tive, integral and Cauchy product of power series)

Mar. 06, 2018 Curves and Differential Equations (definition of curves in Rn,
differentiability, speed limit)

Mar. 12, 2018 Curves and Differential Equations (integrability, rectifiability
and curve length)

Mar. 13, 2018 Curves and Differential Equations (rectifiability, reparametriza-
tion; intro to differential equations, vector fields, initial value problem)

Mar. 19, 2018 Midterm Exam

Mar. 20, 2018 Curves and Differential Equations (Lipschitz condition, Picard–
Lindelöf, separation of variables)

Mar. 26, 2018 no class (Spring Break)

Mar. 27, 2018 no class (Spring Break)
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Apr. 02, 2018 no class (Spring Break)

Apr. 03, 2018 Basic Topology (definition, continuity)

Apr. 09, 2018 Basic Topology (compactness)

Apr. 10, 2018 Basic Topology (Heine–Borel, connectedness)

Apr. 16, 2018 Basic Topology (connectedness, path connectedness)

Apr. 17, 2018 Differentiation in Rn (definitions of total derivative, directional
derivative, partial derivative)

Apr. 23, 2018 Differentiation in Rn (connections between total derivative,
directional derivative, partial derivative)

Apr. 24, 2018 Differentiation in Rn (equivalence of total continuous differen-
tiability and continuous partial differentiability, the gradient and extrema)

Apr. 30, 2018 Differentiation in Rn (higher order derivatives and second order
Taylor expansion)

May 01, 2018 no class (Labor Day)

May 07, 2018 Differentiation in Rn (Inverse Function Theorem)

May 08, 2018 Differentiation in Rn (Implicit Function Theorem)

May 14, 2018 Riemann Integral in Rn (definition and integrability criteria)

May 15, 2018 Riemann Integral in Rn (Fubini and change of variables)

May 29, 2018 Final Exam
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Appendix B

Homeworks

B.1 2018-02-19

B.1.1 [8 points] The Stieltjes integral for discontinuous α

Let α(x) = 0 if x ≤ 0 and α(x) = 1 if x > 0. Give a precise proof that∫ 1

−1
f dα = f(0) for every function f : R 7→ R that is continuous at x = 0.

B.1.2 [4 points] Explicit Stieltjes Integral

Let a < b ∈ (0, 4). Find a monotonically increasing bounded function α : R 7→ R
such that ∫ 4

0

f dα = f(1) + 2f(2) + 3f(3) +
1

2

∫ b

a

f(x) dx

for all f for which the integral exists.

B.1.3 [10 points] Integrable and non-integrable functions

Define two functions f, g : [0, 1] 7→ R via:

f(x) :=

{
0 if x ∈ R \Q,
1/q if x = p/q, with p, q coprime,

g(x) :=

{
0 if x ∈ R \Q,
1 if x ∈ Q.

1. Show that f ∈ R[0, 1] and
∫ 1

0
f(x) dx = 0

2. Show that g is not Riemann-integrable.

B.1.4 [10 points] Riemann integrable or not?

1. Show that f(x) = ex is Riemann integrable on [a, b] ⊂ R. What is the
value of

∫ b
a

ex dx?

2. Show that f(x) = c (c ∈ R) and g(x) = x are Riemann integrable on
[a, b] ⊂ R. Find ∫ b

a

cdx and
∫ b

a

x dx.
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3. Show that f(x) = xn is Riemann integrable on [0, a] ⊂ R for every n ∈ N.
What is the value of

∫ a
0
xn dx? (Hint: You may use the fact that

∑N
k=1 k

n

is a polynomial in N of degree n+ 1 and with leading coefficient 1/(n+ 1),
or — if you know it — use the Stolz-Ceasáro theorem.)

B.1.5 [8 points] Uniform Continuity

Let I ⊂ R be an interval. A function f : I 7→ R is called uniformly continuous
if for all ε > 0 there exists δ > 0 such that for all x, x′ ∈ I with |x− x′| < δ we
have that |f(x)− f(x′)| < ε (in other words, the δ does not depend on x).

1. Show that if I = [a, b] is closed and bounded, then every continuous
function f : [a, b] 7→ R is uniformly continuous. (Hint: In general, δ
may depend on x and thus defines a function δ(x); show that δ(x) is
continuous.)

2. Does the answer change if I is no longer closed, and/or no longer bounded?

B.1.6 (Bonus) [3 points] Uniform Continuity Continued

We continue Problem B.1.5.

1. Suppose f, g : X 7→ R are uniformly continuous on X ⊂ R. Is it true that
f + g is uniformly continuous on X? How about f · g?

2. Does the answer to (1) change if f, g are bounded?

3. Does the answer to (1) change if X is a closed interval?

B.1.7 (Bonus) [5 points] Devil’s staircase and Stieltjes
integrals

Define a function α : [0, 1] 7→ R as Follow: Given x ∈ [0, 1], write x =
∑
i≥1 bi3

−i

with bi ∈ {0, 1, 2} (representation of x in base 3). Let n be minimal with bn = 1
(or n =∞ if all bi 6= 1). Then α(x) :=

∑n
i=1 ai2

−i, where ai = 1 if bi ∈ {1, 2}
and ai = 0 if bi = 0. (For additional credit, you may show check that the value
of α is well defined even at points x that have two representations in base 3).

1. Sketch the graph of α.

2. Show that α is continuous and monotonically increasing.

3. Show that for every ε > 0, there are finitely many intervals Iε,1, Iε,2, . . . , Iε,n
with total length ε so that α is constant on [0, 1] \ ∪ni=1Iε,i (this means
that α is constant except on a set of volumen zero, but α is continuous
and non-constant).

4. Show that the integrals
∫ 1

0
1 dα and

∫ 1

0
xdα exist, and determine their

values. (Hint: Show that
∫ 1

0
(x− 1/2) dα = 0.)
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B.2 2018-02-26

B.2.1 [15 points] Properties of the Riemann–Stieltjes
integral

B.2.2 [8 points] When the integral is zero

B.2.3 [8 points] Simultaneous discontinuity of f and α

B.2.4 [9 points] Monotone functions are integrable

B.2.5 (Bonus) [3 points] Sum of α’s

B.2.6 (Bonus) [3 points] Integration of composition
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B.3 2018-03-05

B.3.1 [10 points] Partial fractions

B.3.2 [6 points] Integration by substitution

B.3.3 [18 points] Lots of integrals . . .

B.3.4 [6 points] Uniform convergence of second derivatives

B.3.5 (Bonus) [4 points] Null sets

B.3.6 (Bonus) [4 points] A criteria for Riemann integrability
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B.4 2018-03-12

B.4.1 [15 points] Convergent and divergent series

B.4.2 [8 points] Taylor series of logarithm

B.4.3 [6 points] Dirichlet’s test on convergence of series

B.4.4 [14 points] The Riemann zeta function

B.4.5 (Bonus) [4 points] Abel’s test on convergence of series
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B.5 2018-04-03

B.5.1 [8 points] More about convergence: root and ratio test

• State carefully the root and the ratio test for series: in which cases do
they imply convergence (absolute or conditional?) or divergence, in which
cases are they inconclusive?

• Give three examples that were not yet treated in class: one each where
the root test proves convergence of a series, where it proves divergence,
and where it is not conclusive.

• Same for the ratio test (different examples, please).

B.5.2 [8 points] More about convergence

Let (an)n∈N be a sequence of positive real numbers. Show that convergence of∑
n an implies convergence of

∑
n

√
an
n .

B.5.3 [16 + 3 points] More about convergence: infinite
products

B.5.4 [8 + 5 points] More about convergence: Dirichlet
series
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B.6 2018-04-03

B.6.1 [12 points] Rectifiable graphs and their arclength

B.6.2 [12 + 2 points] The snowflake: a non-rectifiable curve
(the “von-Koch”–curve)

B.6.3 [16 points] The hyperbolic metric

B.6.4 (Bonus) [2 points] Devil’s staircase

B.6.5 (Bonus) [4 points] Space–Filling curves

51



B.7 2018-04-10

B.7.1 [20 points] Picard–Lindelöf

B.7.2 [8 + 3 points] The exponential differential equation

B.7.3 [12 points] Separation of variables

B.7.4 (Bonus) [5 points] Exponential separation for Lipschitz
vector fields
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B.8 2018-04-17

Note: This homework sheet is not so hard once you get used to compactness.

B.8.1 [5 points] Subspace topology

Let (X, τX) be a topological space and Y ⊂ X. Prove that

τY = {Ui ∩ Y : Ui ∈ τX}

is indeed a topology on Y . Note: This is trivial, but to get familiar with
topologies, carefully write down a nice formal proof.

B.8.2 [10 points] Continuity and compactness

Prove that the continuous image of any compact set is compact.

B.8.3 [25 points] Some compactness lemmas

Prove the following lemmas about compactness:

1. Every closed subset of a compact topological space is compact.

2. In a Hausdorff space, every compact set is closed.

3. Every continuous bijective map from a compact set to a Hausdorff space
has a continuous inverse (i.e., is a homeomorphism)

B.8.4 (Bonus) [8 points] Connectedness and path
connectedness
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B.9 2018-24-2018

B.9.1 [10 points] Connectedness

Prove that every path connected topological space is connected.
Hint: Recall the definitions of both path connectedness and connectedness.

One strategy is to assume that the space is path connected but not connected,
and derive a contradiction.

B.9.2 [10 points] Uniform continuity and compactness

B.9.3 [10 points] Partial derivatives

B.9.4 [10 points] Derivatives, partial derivatives, and
continuity

B.9.5 (Bonus) [8 points] Banach fixed point theorem
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B.10 2018-05-01

B.10.1 [12 points] The chain rule

B.10.2 [14 points] Directional derivatives and total
derivatives

B.10.3 [14 points] Local maxima and the gradient

B.10.4 [8 points] Length
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B.11 2018-05-08

B.11.1 [8 points] Cauchy–Riemann differential equations and
harmonic functions

B.11.2 [18 points] Twice differentiable

B.11.3 [6 points] Second order Taylor

B.11.4 [8 points] The wave equation

56



B.12 2018-05-15

B.12.1 [10 points] Very basic vector calculus

B.12.2 [12 points] Maxima and minima

B.12.3 [10 points] Two-dimensional polar coordinates

B.12.4 [8 points] Three dimensional polar coordinates

B.12.5 (Bonus) [8 points] Newton’s method in several
variables
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