Foundations of Mathematical Physics

Homework 11

Due on May 2, 2018

Problem 1 [3 points]: von Neumann theorem

- (a) Show that $-\Delta$ on the domain $C_0^{\infty}(\Omega)$, where $\Omega \subset \mathbb{R}^n$ is measurable and open, satisfies the conditions of von Neumann's theorem, and thus has self-adjoint extensions.
- (b) Find a conjugation that commutes with $-i\frac{d}{dx}$ on the domain $C_0^{\infty}(\mathbb{R})$, and leaves the domain invariant.

Problem 2 [7 points]: Applying Kato-Rellich

Let $V : \mathbb{R}^3 \to \mathbb{R}$ be such that $V = V_1 + V_2$ with $V_1 \in L^2(\mathbb{R}^3)$ and $V_2 \in L^{\infty}(\mathbb{R}^3)$ (one then writes $V \in L^2(\mathbb{R}^3) + L^{\infty}(\mathbb{R}^3)$). Prove that $-\Delta + V$ is self-adjoint on $H^2(\mathbb{R}^3)$ by using Kato-Rellich: First, show that V is relatively Δ -bounded. Then, show that it is actually infinitesimally Δ -bounded. (*Hint: Sobolev Lemma, Fourier transform and Cauchy-Schwarz.*)

Problem 3 [7 points]: Hardy's inequality

(a) Prove that for all $\varepsilon > 0$ there is a $C_{\varepsilon} < \infty$ such that for all $\psi \in H^2(\mathbb{R}^d)$ and $j = 1, \ldots, d$, we have

$$\|\partial_{x_j}\psi\|_{L^2(\mathbb{R}^d)} \le \varepsilon \|\Delta\psi\|_{L^2(\mathbb{R}^d)} + C_\varepsilon \|\psi\|_{L^2(\mathbb{R}^d)}.$$

(b) Prove Hardy's inequality for d = 3, i.e., prove that there is a $C < \infty$ such that for all $\psi \in H^1(\mathbb{R}^3) \cap C_0^1(\mathbb{R}^3)$, we have

$$|||x|^{-1}\psi||_{L^2(\mathbb{R}^3)} \le C ||\nabla\psi||_{L^2(\mathbb{R}^3)}.$$

Then show that this inequality actually holds for all $\psi \in H^1(\mathbb{R}^3)$, e.g., by using Fatou's lemma. If you can, show that the inequality holds for C = 2.

(c) Using (a) and (b), show that for all $\psi \in H^2(\mathbb{R}^3)$ there is an $\varepsilon > 0$ and $C_{\varepsilon} < \infty$ such that

$$|||x|^{-1}\psi||_{L^{2}(\mathbb{R}^{3})} \leq \varepsilon ||\Delta\psi||_{L^{2}(\mathbb{R}^{3})} + C_{\varepsilon}||\psi||_{L^{2}(\mathbb{R}^{3})}$$

Problem 4 [3 points]: Dirac equation

Consider the Dirac Hamiltonian with Coulomb interaction in three dimensions

$$H = H_0 - \frac{e}{|x|}$$

with

$$H_0 = -i\sum_{\mu=1}^3 \gamma^0 \gamma^\mu \partial_{x_\mu} - \gamma^0 m,$$

where m > 0 and γ^{μ} are the 4 × 4 Dirac gamma matrices, i.e., they satisfy $\gamma^{\mu}\gamma^{\nu} = -\gamma^{\nu}\gamma^{\mu}$ for $\mu \neq \nu$ and $\gamma^{0}\gamma^{0} = -\gamma^{1}\gamma^{1} = -\gamma^{2}\gamma^{2} = -\gamma^{3}\gamma^{3} = 1$. Given that $(H_{0}, H^{1}(\mathbb{R}^{3})^{4})$ is self-adjoint, prove that also H is self-adjoint for $e < \frac{1}{2}$. (Note: For $e > \frac{1}{2}$, H is actually not essentially self-adjoint on $H^{1}(\mathbb{R}^{3})^{4}$ anymore.)