Foundations of Mathematical Physics

Homework 12

Due on May 9, 2018

Problem 1 [7 points]: Spectrum of multiplication operators

Let (X, μ) be a measure space and $f: X \to \mathbb{R}$ measurable. We define

$$D := \{ \psi \in L^2(X, \mu) : f \psi \in L^2(X, \mu) \}.$$

- (a) Prove that D is dense in $L^2(X,\mu)$ and that the multiplication operator (M_f, D) is selfadjoint on $L^2(X,\mu)$. Hint: Approximate $\psi \in L^2(X,\mu)$, e.g., by multiplying it with the characteristic function of $f^{-1}([-n,n])$.
- (b) Prove that $\sigma(M_f) = \operatorname{ess ran} f$, where $\sigma(M_f)$ is the spectrum of M_f , and

ess ran
$$f := \left\{ \lambda \in \mathbb{R} : \mu \left(f^{-1} (\lambda - \varepsilon, \lambda + \varepsilon) \right) > 0 \text{ for all } \varepsilon > 0 \right\}$$

is the essential range. Hint: The resolvent of a multiplication operator is useful here.

Problem 2 [7 points]: Resolvent convergence

Let \mathcal{H} be a Hilbert space, (A, D(A)) a self-adjoint operator, and $(A_n, D(A_n))$ a sequence of self-adjoint operators.

(a) Let $\sup_{n \in \mathbb{N}} ||A_n||_{\mathcal{L}(\mathcal{H})} \leq C$ and $A \in \mathcal{L}(\mathcal{H})$. Prove that then

$$\lim_{n \to \infty} \|A_n - A\|_{\mathcal{L}(\mathcal{H})} = 0 \quad \Longleftrightarrow \quad \exists z \in \mathbb{C} \setminus \mathbb{R} : \lim_{n \to \infty} \|R_z(A_n) - R_z(A)\|_{\mathcal{L}(\mathcal{H})} = 0.$$

Hint: Recall the estimate for the norm of the resolvent away from the real line. You can also use the second resolvent formula $R_z(A) - R_z(B) = R_z(A)(B - A)R_z(B)$.

- (b) Prove that the following statements are equivalent:
 - (i) For every $\psi \in D(A)$ there is a sequence $(\psi_n)_n$ with $\psi_n \in D(A_n)$ and

$$\lim_{n \to \infty} \|\psi_n - \psi\|_{\mathcal{H}} = 0 = \lim_{n \to \infty} \|A_n \psi_n - A\psi\|_{\mathcal{H}}.$$

(ii) There is a $z \in \mathbb{C} \setminus \mathbb{R}$ such that for all $\varphi \in \mathcal{H}$

$$\lim_{n \to \infty} \|R_z(A_n)\varphi - R_z(A)\varphi\|_{\mathcal{H}} = 0.$$

Problem 3 [6 points]: Example of functional calculus

We first give the definition of what a functional calculus is. Let (H, D(H)) be self-adjoint on a Hilbert space \mathcal{H} . A map that assigns an operator $f(H) \in \mathcal{L}(\mathcal{H})$ to each element $f : \mathbb{R} \to \mathbb{C}$ of a subalgebra \mathcal{E} of the bounded Borel functions $\mathcal{B}(\mathbb{R})$, is called a functional calculus if:

(i) $f \mapsto f(H)$ is a homomorphism, i.e.,

$$(f + \alpha g)(H) = f(H) + \alpha g(H)$$
 and $f(H)g(H) = (fg)(H)$ for all $f, g \in \mathcal{E}$.

- (ii) $f(H)^* = \bar{f}(H)$.
- (iii) $||f(H)|| \le ||f||_{\infty}$.
- (iv) For $z \in \mathbb{C} \setminus \mathbb{R}$ and $r_z(x) = (x z)^{-1}$, we have $r_z(H) = (H z)^{-1}$ (resolvent).
- (v) If $f \in C_0^{\infty}(\mathbb{R})$ vanishes on the spectrum of H, i.e., $\operatorname{supp} f \cap \sigma(H) = \emptyset$, then f(H) = 0.

Now let \mathcal{H} be separable, (H, D(H)) a self-adjoint operator, and let (φ_n) be an orthonormal basis of eigenfunctions, i.e., $\varphi_n \in D(H)$ and there are (λ_n) with $H\varphi_n = \lambda_n \varphi_n$. For bounded and measurable $f : \mathbb{R} \to \mathbb{C}$ we define f(H) by

$$f(H)\psi := \sum_{n=1}^{\infty} f(\lambda_n) \langle \varphi_n, \psi \rangle \varphi_n.$$

Prove that this defines a functional calculus.