Foundations of Mathematical Physics

Homework 12
Due on May 9, 2018

Problem 1 [7 points]: Spectrum of multiplication operators

Let (X, μ) be a measure space and $f: X \rightarrow \mathbb{R}$ measurable. We define

$$
D:=\left\{\psi \in L^{2}(X, \mu): f \psi \in L^{2}(X, \mu)\right\} .
$$

(a) Prove that D is dense in $L^{2}(X, \mu)$ and that the multiplication operator $\left(M_{f}, D\right)$ is selfadjoint on $L^{2}(X, \mu)$. Hint: Approximate $\psi \in L^{2}(X, \mu)$, e.g., by multiplying it with the characteristic function of $f^{-1}([-n, n])$.
(b) Prove that $\sigma\left(M_{f}\right)=$ ess $\operatorname{ran} f$, where $\sigma\left(M_{f}\right)$ is the spectrum of M_{f}, and

$$
\text { ess } \operatorname{ran} f:=\left\{\lambda \in \mathbb{R}: \mu\left(f^{-1}(\lambda-\varepsilon, \lambda+\varepsilon)\right)>0 \text { for all } \varepsilon>0\right\}
$$

is the essential range. Hint: The resolvent of a multiplication operator is useful here.

Problem 2 [7 points]: Resolvent convergence

Let \mathcal{H} be a Hilbert space, $(A, D(A))$ a self-adjoint operator, and $\left(A_{n}, D\left(A_{n}\right)\right)$ a sequence of self-adjoint operators.
(a) Let $\sup _{n \in \mathbb{N}}\left\|A_{n}\right\|_{\mathcal{L}(\mathcal{H})} \leq C$ and $A \in \mathcal{L}(\mathcal{H})$. Prove that then

$$
\lim _{n \rightarrow \infty}\left\|A_{n}-A\right\|_{\mathcal{L}(\mathcal{H})}=0 \Longleftrightarrow \exists z \in \mathbb{C} \backslash \mathbb{R}: \lim _{n \rightarrow \infty}\left\|R_{z}\left(A_{n}\right)-R_{z}(A)\right\|_{\mathcal{L}(\mathcal{H})}=0
$$

Hint: Recall the estimate for the norm of the resolvent away from the real line. You can also use the second resolvent formula $R_{z}(A)-R_{z}(B)=R_{z}(A)(B-A) R_{z}(B)$.
(b) Prove that the following statements are equivalent:
(i) For every $\psi \in D(A)$ there is a sequence $\left(\psi_{n}\right)_{n}$ with $\psi_{n} \in D\left(A_{n}\right)$ and

$$
\lim _{n \rightarrow \infty}\left\|\psi_{n}-\psi\right\|_{\mathcal{H}}=0=\lim _{n \rightarrow \infty}\left\|A_{n} \psi_{n}-A \psi\right\|_{\mathcal{H}}
$$

(ii) There is a $z \in \mathbb{C} \backslash \mathbb{R}$ such that for all $\varphi \in \mathcal{H}$

$$
\lim _{n \rightarrow \infty}\left\|R_{z}\left(A_{n}\right) \varphi-R_{z}(A) \varphi\right\|_{\mathcal{H}}=0
$$

Problem 3 [6 points]: Example of functional calculus

We first give the definition of what a functional calculus is. Let $(H, D(H))$ be self-adjoint on a Hilbert space \mathcal{H}. A map that assigns an operator $f(H) \in \mathcal{L}(\mathcal{H})$ to each element $f: \mathbb{R} \rightarrow \mathbb{C}$ of a subalgebra \mathcal{E} of the bounded Borel functions $\mathcal{B}(\mathbb{R})$, is called a functional calculus if:
(i) $f \mapsto f(H)$ is a homomorphism, i.e.,

$$
(f+\alpha g)(H)=f(H)+\alpha g(H) \quad \text { and } \quad f(H) g(H)=(f g)(H) \quad \text { for all } f, g \in \mathcal{E} .
$$

(ii) $f(H)^{*}=\bar{f}(H)$.
(iii) $\|f(H)\| \leq\|f\|_{\infty}$.
(iv) For $z \in \mathbb{C} \backslash \mathbb{R}$ and $r_{z}(x)=(x-z)^{-1}$, we have $r_{z}(H)=(H-z)^{-1}$ (resolvent).
(v) If $f \in C_{0}^{\infty}(\mathbb{R})$ vanishes on the spectrum of H, i.e., $\operatorname{supp} f \cap \sigma(H)=\emptyset$, then $f(H)=0$.

Now let \mathcal{H} be separable, $(H, D(H))$ a self-adjoint operator, and let $\left(\varphi_{n}\right)$ be an orthonormal basis of eigenfunctions, i.e., $\varphi_{n} \in D(H)$ and there are $\left(\lambda_{n}\right)$ with $H \varphi_{n}=\lambda_{n} \varphi_{n}$. For bounded and measurable $f: \mathbb{R} \rightarrow \mathbb{C}$ we define $f(H)$ by

$$
f(H) \psi:=\sum_{n=1}^{\infty} f\left(\lambda_{n}\right)\left\langle\varphi_{n}, \psi\right\rangle \varphi_{n}
$$

Prove that this defines a functional calculus.

