Foundations of Mathematical Physics

Homework 4

Due on March 7, 2018

Problem 1 [8 points]: Heat Equation

(a) Let $\psi_{0} \in \mathcal{S}\left(\mathbb{R}^{d}\right)$. Determine the solution to the heat equation

$$
\begin{aligned}
\partial_{t} \psi(t, x) & =\Delta_{x} \psi(t, x) \quad \text { for all }(t, x) \in[0, \infty) \times \mathbb{R}^{d}, \\
\psi(0, x) & =\psi_{0}(x) \quad \text { for all } x \in \mathbb{R}^{d}
\end{aligned}
$$

by using the Fourier transform. Write the solution as

$$
\begin{equation*}
\psi(t, x)=\int_{\mathbb{R}^{d}} K(t, x-y) \psi_{0}(y) d y \tag{1}
\end{equation*}
$$

and explicitly state what the function $K:(0, \infty) \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is.
(b) Let $\psi_{o} \in C\left(\mathbb{R}^{d}\right)$ be bounded. Show that Equation (1) defines a bounded function $\psi \in$ $C^{\infty}\left((0, \infty) \times \mathbb{R}^{d}\right)$ which solves the heat equation on $(0, \infty) \times \mathbb{R}^{d}$. Show also that ψ can be continuously extended by ψ_{0} at $t=0$, i.e., show that $\lim _{t \rightarrow 0} \psi(t, x)=\psi_{0}(x)$ for all $x \in \mathbb{R}^{d}$. (Hint: Use Problem 4 from Homework 2.)

Problem 2 [6 points]: Projectors

Let $\varphi \in L^{2}\left(\mathbb{R}^{d}\right)$ with $\|\varphi\|=1$ and $N \geq 1$.
(a) For $1 \leq j \leq N$, let $p_{j}: L^{2}\left(\mathbb{R}^{d N}\right) \rightarrow L^{2}\left(\mathbb{R}^{d N}\right)$ be defined by

$$
\left(p_{j} \psi\right)\left(x_{1}, \ldots, x_{N}\right):=\varphi\left(x_{j}\right) \int \overline{\varphi\left(x_{j}\right)} \psi\left(x_{1}, \ldots, x_{N}\right) d x_{j}
$$

for all $\psi \in L^{2}\left(\mathbb{R}^{d N}\right)$ (here \bar{z} denotes the complex conjugate of z). Show that p_{j} and $q_{j}=1-p_{j}$ are projectors, i.e., $p_{j}^{2}=p_{j}$ and $q_{j}^{2}=q_{j}$.
(b) Now let $P^{(N, k)}: L^{2}\left(\mathbb{R}^{d N}\right) \rightarrow L^{2}\left(\mathbb{R}^{d N}\right)$ be defined by

$$
P^{(N, k)}:=\sum_{a \in \mathcal{A}_{k}} \prod_{j=1}^{N}\left(p_{j}\right)^{1-a_{j}}\left(q_{j}\right)^{a_{j}},
$$

where $\mathcal{A}_{k}=\left\{a \in\{0,1\}^{N}: \sum_{j=1}^{N} a_{j}=k\right\}$. Show that $P^{(N, k)}$ is a projector for all $1 \leq k \leq N$, that $P^{(N, k)} P^{(N, \ell)}=0$ for $\ell \neq k$, and that $\sum_{k=0}^{N} P^{(N, k)}=1$ (where 1 is here the identity on $L^{2}\left(\mathbb{R}^{d N}\right)$).

Problem 3 [6 points]: Gronwall's Lemma

Let us prove again a standard result from Analysis. Let $t \geq 0$ and let $\eta: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function that satisfies the estimate

$$
\begin{equation*}
\frac{d \eta(t)}{d t} \leq C(t)(\eta(t)+\varepsilon) \tag{2}
\end{equation*}
$$

for some $\varepsilon \in \mathbb{R}$ and where $C: \mathbb{R} \rightarrow \mathbb{R}$ is continuous. Prove that for all $t \geq 0$

$$
\eta(t) \leq \exp \left(\int_{0}^{t} C(s) d s\right) \eta(0)+\left(\exp \left(\int_{0}^{t} C(s) d s\right)-1\right) \varepsilon
$$

