Foundations of Mathematical Physics

Homework 5

Due on March 14, 2018

Problem 1 [4 points]: Orthonormal basis

Prove that an orthonormal sequence $\left(\varphi_{j}\right)$ in a Hilbert space is an orthonormal basis if and only if

$$
\left\langle\varphi_{j}, \psi\right\rangle=0 \quad \text { for all } j \in \mathbb{N} \Rightarrow \psi=0 .
$$

Problem 2 [6 points]: Away from the support of $\widehat{\psi}$
Let $\psi \in \mathcal{S}$ and let its Fourier transform have compact support, i.e., $K=\operatorname{supp}(\widehat{\psi})$ is compact. Let U be an open ε-neighborhood of K, i.e., the distance between the complement of U and K is ε, i.e., $\operatorname{dist}\left(U^{c}, K\right)=\varepsilon>0$. Prove that then for any $m \in \mathbb{N}$ there is a constant C_{m} such that for any t, x with $x / t \notin U$ and $|t| \geq 1$,

$$
\left|\left(e^{-i t(-\Delta)} \psi\right)(t, x)\right| \leq C_{m}(1+|t|)^{-m} .
$$

Hint: One could write the phase factor as $e^{i \alpha S}$ with $S(k)=\frac{k x-k^{2} t / 2}{1+|t|}$ and prove that

$$
e^{i \alpha S}=\left[\frac{1}{i \alpha}\left|\nabla_{k} S\right|^{-2}\left(\nabla_{k} S\right) \nabla_{k}\right]^{m} e^{i \alpha S},
$$

and then integrate by parts.
Problem 3 [4 points]: Uncertainty
Prove the Heisenberg uncertainty principle. Let

$$
\delta x_{j}:=\left\langle\psi,\left(x_{j}-\left\langle\psi, x_{j} \psi\right\rangle\right)^{2} \psi\right\rangle \quad \delta p_{j}:=\left\langle\psi,\left(p_{j}-\left\langle\psi, p_{j} \psi\right\rangle\right)^{2} \psi\right\rangle
$$

be the variances in the position and the asymptotic momentum distributions, where $p_{j}=$ $-i \partial_{x_{j}}$ and $\langle f, g\rangle=\int \bar{f} g$. (Let's just take $\psi \in \mathcal{S}$ here.) Prove that

$$
\delta x_{j} \delta p_{j} \geq \frac{1}{2}
$$

Problem 4 [4 points]: Refined Uncertainty
Prove the refined uncertainty principle (Hardy's inequality) on $\mathcal{S}\left(\mathbb{R}^{3}\right)$, i.e., that

$$
\left.\langle\psi,(-\Delta) \psi\rangle \geq\left.\frac{1}{4}\langle\psi,| x\right|^{-2} \psi\right\rangle
$$

for all $\psi \in \mathcal{S}\left(\mathbb{R}^{3}\right)$ (with the same notation as in the previous problem). Hint: Look at the quantity $\left[|x|^{-1} p_{j}|x|^{-1}, x_{j}\right]$, where $[A, B]:=A B-B A$ is the commutator. Note: This could be directly used to give a proof of the stability of hydrogen atoms.

Problem 5 [2 points]: Projectors ctd.
We continue Problem 2 from Homework 4. Prove that

$$
\left\langle\psi, q_{1} \psi\right\rangle=\left\langle\psi, \sum_{k=0}^{N} \frac{k}{N} P^{(N, k)} \psi\right\rangle
$$

for all symmetric $\psi \in L^{2}\left(\mathbb{R}^{d N}\right)$ (symmetric under exchange of variables).

