Calculus on Manifolds

Homework 1

Due on September 12, 2019

Problem 1 [4 points]

Let $M_{n \times n}(\mathbb{R})$ denote the set of real $n \times n$ matrices. We consider the function

$$
f: M_{n \times n}(\mathbb{R}) \rightarrow \mathbb{R}, f(A)=\operatorname{det}(\mathbb{1}+A) .
$$

Show that f is differentiable and $D f(0)(H)=\operatorname{Tr}(H):=\sum_{i=1}^{n} H_{i i}$ (the trace of H).

Problem 2 [6 points]

For fixed integer n, we consider the functions

$$
f_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}, f(x)=\|x\|^{m},
$$

for integers $m \geq 1$.
(a) Show that f_{m} is of class C^{∞} for even m.
(b) Show that f_{1} is differentiable on $\mathbb{R}^{n} \backslash\{0\}$, but not at zero.
(c) Is f_{3} of class C^{1} ?

Problem 3 [6 points]

Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be of class C^{1}.
(a) Is the following generalization of the mean-value theorem true of false (prove your answer)? For every $x, y \in \mathbb{R}^{m}$ there is a $z \in \mathbb{R}^{m}$ such that

$$
f(x)-f(y)=D f(z)(x-y) .
$$

(b) Show that for all $x, y \in \mathbb{R}^{m}$ we have

$$
\|f(x)-f(y)\| \leq C\|x-y\|,
$$

with $C=\sup _{z \in I_{x y}}\|D f(z)\|$, where $I_{x y}$ is the line segment connecting x and y, and where $\|A\|:=\sup _{\|x\|=1}\|A x\|$ is the operator norm of a linear operator A.
(c) Using (b), show that for all $x, y, a \in \mathbb{R}^{m}$ we have

$$
\|f(x)-f(y)-D f(a)(x-y)\| \leq\|x-y\| \sup _{z \in I_{x y}}\|D f(z)-D f(a)\| .
$$

Problem 4 [4 points]

(a) For each $k \geq 1$, give examples of functions $f_{k}: \mathbb{R} \rightarrow \mathbb{R}$ which are C^{k} but not C^{k+1}.
(b) Give an example of a bijective function $g: \mathbb{R} \rightarrow \mathbb{R}$ which is C^{∞} but whose inverse is not C^{∞}.

