Calculus on Manifolds

Homework 2

Due on September 19, 2019

Problem 1 [4 points]

Let $f: X \to Y$ be a map between topological spaces X and Y with the property that every $p \in X$ has a neighborhood U such that $f|_U$ is continuous. Prove that then f is continuous.

Problem 2 [4 points]

Prove that every continuous bijection $f: X \to Y$ with X compact and Y Hausdorff is a homeomorphism. (*Hint: In Y, every compact set is closed (why?*); in X, every closed subset is compact (why?). Then note that f takes closed sets to closed sets (why?).)

Problem 3 [4 points]

Prove that for a topological space (X, τ) , path connectedness implies connectedness.

Problem 4 [4 points]

Let $U \subset \mathbb{R}^n$ be open and connected. Prove that if the derivative of $f: U \to \mathbb{R}$ is zero everywhere in U, then f is constant. (*Hint: Use the previous homework sheet and connect some given point to any other point by a finite sequence of line segments.*) If U is not connected, give a counterexample of an f with zero derivative that is not constant.

Problem 5 [4 points]

Let (X, d_X) and (Y, d_Y) be metric spaces with X compact and let $f : X \to Y$ be continuous. Prove that f is uniformly continuous.