Calculus on Manifolds

Homework 4

Due on October 10, 2019

Problem 1 [4 points]

Do Problem 2 (b) and the smoothness part of Problem 3 from the previous homework sheet again, with the definition of smoothness from class.

Problem 2 [4 points]

Let $f : \mathbb{R}^m \to \mathbb{R}^n$ be a bijective C^1 function. Prove that then $m \leq n$. (Remark: In class, we used this to prove that the dimension of a manifold is diffeomorphism invariant.)

Problem 3 [4 points]

Consider the *n*-sphere \mathbb{S}^n as a manifold with the atlas defined by the stereographic projections. This atlas is smooth as we showed in the last homework sheet. Prove that the antipodal map $\alpha : \mathbb{S}^n \to \mathbb{S}^n, \alpha(x) = -x$ is smooth.

Problem 4 [8 points]

For any topological space M, let C(M) denote the set of continuous functions $f: M \to \mathbb{R}$. This set C(M) is an algebra over \mathbb{R} , meaning that the operation of multiplication (defined pointwise) is distributive and bilinear. For any continuous map $F: M \to N$ (N another topological space), we define $F^*: C(N) \to C(M), F^*(f) = f \circ F$.

- (a) Show that F^* is a linear map.
- (b) Now let M and N be smooth manifolds. Show that F is smooth if and only if $F^*(C^{\infty}(N)) \subset C^{\infty}(M)$.
- (c) Let $F : M \to N$ be a homeomorphism between the smooth manifolds M and N. Show that F is a diffeomorphism if and only if F^* is a bijective linear map (i.e., an isomorphism) from $C^{\infty}(N)$ to $C^{\infty}(M)$.