Calculus on Manifolds

Homework 5

Due on October 22, 2019

Problem 1 [4 points]

(a) Let $U \subset \mathbb{R}^{n}$ be a convex neighborhood of the origin and $f: U \rightarrow \mathbb{R}$ be smooth. Prove that there exist smooth functions $g_{1}, \ldots, g_{n}: U \rightarrow \mathbb{R}$ such that

$$
f(x)=\sum_{j=1}^{n} x_{j} g_{j}(x) \quad \text { and } \quad g_{j}(0)=\frac{\partial f(0)}{\partial x^{j}} \forall j=1, \ldots, n \text {. }
$$

(b) Let $U \subset \mathbb{R}^{n}$ be an open ball, $a \in U$ and $\omega: C^{\infty}(U) \rightarrow \mathbb{R}$ a derivation at a. Prove that there exists a unique vector $v \in \mathbb{R}^{n}$ such that $\omega(f)=\left.D_{v}\right|_{a} f$ (the directional derivative of f at a in direction v).

Problem 2 [4 points]

Let M be a smooth manifold, $p \in M$, and let $\mathcal{V}_{p} M$ denote the set of equivalence classes of smooth curves $\gamma:(-1,1) \rightarrow M$ with $\gamma(0)=p$ under the equivalence relation $\gamma_{1} \sim \gamma_{2}$ if $\left(f \circ \gamma_{1}\right)^{\prime}(0)=\left(f \circ \gamma_{2}\right)^{\prime}(0)$ for every smooth real-valued function f defined in a neighborhood of p. Show that the map $\Psi: \mathcal{V}_{p} M \rightarrow T_{p} M$ defined by $\Psi[\gamma]=d \gamma_{0}(\partial)$ is well-defined and bijective. Here ∂ is the usual derivative in \mathbb{R}, and $d \gamma_{0}$ is the differential of the map γ as defined in class (think carefully about what $d \gamma_{0}(\partial)$ means then). (Note: This gives us another way to think about the tangent space.)

Problem 3 [8 points]

Let M, N be smooth manifolds, M connected, and $F: M \rightarrow N$ smooth such that $d F_{p}: T_{p} M \rightarrow T_{F(p)} N$ is the zero map for all $p \in M$. Prove that then F is a constant map. (Hint: Use local coordinates and reduce the question to a problem in \mathbb{R}^{n}.)

Problem 4 [8 points]

Let M, N, P be smooth manifolds, $F: M \rightarrow N$ and $G: N \rightarrow P$ smooth maps, and let $p \in M$. Prove the chain rule for $d(G \circ F)_{p}: T_{p} M \rightarrow T_{G(F(p))} P$, i.e.,

$$
d(G \circ F)_{p}=d G_{F(p)} \circ d F_{p} .
$$

Problem 5 [8 points]

(a) Let M, N be smooth manifolds, and $F: M \rightarrow N$ a smooth map. Let (U, φ) be a smooth coordinate chart for M containing p, and (V, ψ) a smooth coordinate chart for N containing $F(p)$. Using the definition of the differential, carefully compute

$$
d F_{p}\left(\left.\frac{\partial}{\partial x^{i}}\right|_{p}\right)
$$

in the local coordinates. (In each step of the computation, write down explicitly what properties you use.)
(b) Suppose two smooth charts $\left(U_{1}, \varphi_{1}\right)$ and $\left(U_{2}, \varphi_{2}\right)$ are given on a smooth manifold M, and $p \in U_{1} \cap U_{2}$. Consider the transition map and use the definition of the differential to compute $\left.\frac{\partial}{\partial x^{i}}\right|_{p}$ in terms of the $\left.\frac{\partial}{\partial \tilde{x}^{i}}\right|_{p}$, where $\left(x^{i}\right)$ are the coordinate functions of φ_{1} and $\left(\widetilde{x}^{i}\right)$ the coordinate functions of φ_{2}.
(c) Polar coordinates in \mathbb{R}^{2} are given by the coordinate change $(x, y)=(r \cos \theta, r \sin \theta)$. Compute $\left.\frac{\partial}{\partial r}\right|_{p}$ and $\left.\frac{\partial}{\partial \theta}\right|_{p}$ in terms of $\left.\frac{\partial}{\partial x}\right|_{p}$ and $\left.\frac{\partial}{\partial y}\right|_{p}$ for any $p \neq 0$.

