Calculus on Manifolds

Homework 7

Due on November 14, 2019

Problem 1 [4 points]

Prove that every Lie group homomorphism has constant rank.

Problem 2 [4 points]

Let G^{0} be the identity component of a Lie group G. Prove that G^{0} is a Lie group, $\operatorname{dim} G^{0}=\operatorname{dim} G$, and that G^{0} is a normal subgroup of G.

Problem 3 [5 points]

We consider the group $O_{n}(\mathbb{R})$ of orthogonal real $n \times n$ matrices (i.e., matrices whose columns and rows are orthonormal).
(a) Prove that $O_{n}(\mathbb{R})$ is a compact group. (Hint: Consider the map $g \mapsto g^{T} g$, where g^{T} is the transpose of g.)
(b) Show that the image of the homomorphism det : $O_{n}(\mathbb{R}) \rightarrow \mathbb{R}^{*}$ is the subgroup $\{-1,+1\}$.
(c) Now consider the special orthogonal group $S O_{n}(\mathbb{R})$, i.e., the subgroup of $O_{n}(\mathbb{R})$ consisting of matrices g with det $g=1$. Show that $\mathrm{SO}_{2}(\mathbb{R})$ is isomorphic to the circle S^{1}, and thus abelian. Is $O_{2}(\mathbb{R})$ also abelian?
(d) Prove that $\mathrm{SO}_{3}(\mathbb{R})$ is not abelian. (Hint: Consider rotations with different axes.)

Problem 4 [4 points]

Let X and Y be topological spaces and $f: X \rightarrow Y$ a continuous map. The map f is called proper if for every compact set $K \subset Y$ the preimage $f^{-1}(K)$ is also compact.
(a) Give an example of a proper and an example of a non-proper continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$.
(b) Suppose X is compact and Y is Hausdorff. Show that then $f: X \rightarrow Y$ is proper.
(c) Suppose $f: X \rightarrow Y$ is a bijective proper continuous map. Show that then f is a homeomorphism.

Problem 5 [3 points]

(a) Consider the standard embedding $S^{1} \subset \mathbb{R}^{2}$. For each point $p=(x, y) \in S^{1}$, define $X(p)=(-y, x)$. Show that $X(p)$ is a basis for $T_{p} S^{1}$ for all $p \in S^{1}$.
(b) Consider the standard embedding $S^{3} \subset \mathbb{R}^{4}$. For each point $p=(x, y, z, t) \in S^{3}$, define

$$
\begin{aligned}
& X_{1}(p)=(-y, x, t,-z) \\
& X_{2}(p)=(-z,-t, x, y) \\
& X_{3}(p)=(-t, z,-y, x) .
\end{aligned}
$$

Show that $X_{1}(p), X_{2}(p), X_{3}(p)$ form a basis of $T_{p} S^{3}$ for all $p \in S^{3}$.

