Calculus on Manifolds

Homework 9

Due on November 28, 2019

Problem 1 [4 points]

For any integer $n \geq 1$, by identifying \mathbb{C}^n with \mathbb{R}^{2n} in the usual way, we can consider the odd-dimensional sphere \mathbb{S}^{2n-1} as a subset of \mathbb{C}^n . Define a global flow on \mathbb{S}^{2n-1} by $\theta(t, z) = e^{it}z$. Show that the infinitesimal generator of θ is a smooth nowhere-vanishing vector field on \mathbb{S}^{2n-1} . For n = 2, find the integral curves of θ .

Problem 2 [5 points]

Let X and Y be two (smooth) vector fields on a smooth manifold M. Let θ_t be the local flow of Y. Prove that

$$\left. \frac{d}{dt} \right|_{t=0} \left((\theta_{-t})_* X \right) = [Y, X],$$

where $(\theta_{-t})_*$ is the pushforward of $\theta_{-t} : M \to M$, and [X, Y] the Lie bracket. Start with the fact that for any smooth $f : M \to \mathbb{R}$ one can write

$$f(\theta_t(x)) = f(x) + t(Yf)(x) + t^2 E(x,t)$$

for some smooth E(x,t) with $E(x,0) = \frac{1}{2}(Y^2f)(x)$, and then compute directly.

Problem 3 [4 points]

Consider the smooth manifold $M = \{(x, y) \in \mathbb{R}^2 : x > 0\}$, and the smooth function $f: M \to \mathbb{R}, f(x, y) = \frac{x}{x^2+y^2}$. Compute the coordinate representation for df and determine the set of all points $p \in M$ at which $df_p = 0$, once in standard coordinates (x, y), and once in polar coordinates (r, φ) .

Problem 4 [3 points]

Let M be a smooth manifold, and $\omega \in T_p^*M$. Suppose two local coordinates (x^j) and (\tilde{x}^j) are given for some neighborhood of $p \in M$. How do the components of ω in one set of coordinates change when expressed in the other coordinates?

Problem 5 [4 points]

Let V be a vector space, then $V^* \otimes \ldots \otimes V^*$ (k times) is called the space of covariant ktensors. A tensor T is called alternating if $T(\ldots, v_i, \ldots, v_j, \ldots) = -T(\ldots, v_j, \ldots, v_i, \ldots)$, and symmetric if $T(\ldots, v_i, \ldots, v_j, \ldots) = T(\ldots, v_j, \ldots, v_i, \ldots)$.

Now consider $V = \mathbb{R}^3$. Let (e^1, e^2, e^3) (note the upper indices) be the standard dual basis for $(\mathbb{R}^3)^*$.

- (a) Show that $e^1 \otimes e^2 \otimes e^3$ is not equal to a sum of an alternating tensor and a symmetric tensor.
- (b) Can $e^1 \otimes e^2 + e^2 \otimes e^1 \in V^* \otimes V^*$ be written as $w^1 \otimes w^2$ for some $w^1, w^2 \in V^*$? (Prove your answer.)