Calculus on Manifolds

Homework 9

Due on November 28, 2019

Problem 1 [4 points]

For any integer $n \geq 1$, by identifying \mathbb{C}^{n} with $\mathbb{R}^{2 n}$ in the usual way, we can consider the odd-dimensional sphere $\mathbb{S}^{2 n-1}$ as a subset of \mathbb{C}^{n}. Define a global flow on $\mathbb{S}^{2 n-1}$ by $\theta(t, z)=e^{i t} z$. Show that the infinitesimal generator of θ is a smooth nowhere-vanishing vector field on $\mathbb{S}^{2 n-1}$. For $n=2$, find the integral curves of θ.

Problem 2 [5 points]

Let X and Y be two (smooth) vector fields on a smooth manifold M. Let θ_{t} be the local flow of Y. Prove that

$$
\left.\frac{d}{d t}\right|_{t=0}\left(\left(\theta_{-t}\right)_{*} X\right)=[Y, X],
$$

where $\left(\theta_{-t}\right)_{*}$ is the pushforward of $\theta_{-t}: M \rightarrow M$, and $[X, Y]$ the Lie bracket. Start with the fact that for any smooth $f: M \rightarrow \mathbb{R}$ one can write

$$
f\left(\theta_{t}(x)\right)=f(x)+t(Y f)(x)+t^{2} E(x, t)
$$

for some smooth $E(x, t)$ with $E(x, 0)=\frac{1}{2}\left(Y^{2} f\right)(x)$, and then compute directly.

Problem 3 [4 points]

Consider the smooth manifold $M=\left\{(x, y) \in \mathbb{R}^{2}: x>0\right\}$, and the smooth function $f: M \rightarrow \mathbb{R}, f(x, y)=\frac{x}{x^{2}+y^{2}}$. Compute the coordinate representation for $d f$ and determine the set of all points $p \in M$ at which $d f_{p}=0$, once in standard coordinates (x, y), and once in polar coordinates (r, φ).

Problem 4 [3 points]

Let M be a smooth manifold, and $\omega \in T_{p}^{*} M$. Suppose two local coordinates (x^{j}) and $\left(\tilde{x}^{j}\right)$ are given for some neighborhood of $p \in M$. How do the components of ω in one set of coordinates change when expressed in the other coordinates?

Problem 5 [4 points]

Let V be a vector space, then $V^{*} \otimes \ldots \otimes V^{*}(k$ times $)$ is called the space of covariant k tensors. A tensor T is called alternating if $T\left(\ldots, v_{i}, \ldots, v_{j}, \ldots\right)=-T\left(\ldots, v_{j}, \ldots, v_{i}, \ldots\right)$, and symmetric if $T\left(\ldots, v_{i}, \ldots, v_{j}, \ldots\right)=T\left(\ldots, v_{j}, \ldots, v_{i}, \ldots\right)$.

Now consider $V=\mathbb{R}^{3}$. Let $\left(e^{1}, e^{2}, e^{3}\right)$ (note the upper indices) be the standard dual basis for $\left(\mathbb{R}^{3}\right)^{*}$.
(a) Show that $e^{1} \otimes e^{2} \otimes e^{3}$ is not equal to a sum of an alternating tensor and a symmetric tensor.
(b) Can $e^{1} \otimes e^{2}+e^{2} \otimes e^{1} \in V^{*} \otimes V^{*}$ be written as $w^{1} \otimes w^{2}$ for some $w^{1}, w^{2} \in V^{*}$? (Prove your answer.)

