Calculus on Manifolds

Homework 10

Due on December 5, 2019

Problem 1 [1.5 points]

Let V be a finite dimensional vector space and Alt : $T^{k}\left(V^{*}\right) \rightarrow \Lambda^{k}\left(V^{*}\right)$ the alternation map. Let $\beta \in T^{3}\left(V^{*}\right)$. Explicitly compute $\operatorname{Alt} \beta\left(v_{1}, v_{2}, v_{3}\right)$ for any $v_{1}, v_{2}, v_{3} \in V$.

Problem 2 [3 points]

(a) Let $\omega \in \Lambda^{k}\left(V^{*}\right), \eta \in \Lambda^{\ell}\left(V^{*}\right)$. Prove that $\omega \wedge \eta=(-1)^{k \ell} \eta \wedge \omega$.
(b) Let $\omega^{1}, \ldots, \omega^{k} \in \Lambda^{1}\left(V^{*}\right)$ and $v_{1}, \ldots, v_{k} \in V$. Prove that

$$
\omega^{1} \wedge \ldots \wedge \omega^{k}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det} \omega^{j}\left(v_{i}\right) .
$$

Problem 3 [5 points]

Let $F: M \rightarrow N$ be a smooth map between smooth manifolds M, N, and let ω, η be differential forms on N, then the pullbacks $F^{*} \omega$ and $F^{*} \eta$ are differential forms on M.
(a) Prove that $F^{*}(\omega \wedge \eta)=\left(F^{*} \omega\right) \wedge\left(F^{*} \eta\right)$.
(b) Prove that in any smooth chart,

$$
F^{*}\left(\sum_{I}^{\prime} \omega_{I} d y^{i_{1}} \wedge \ldots \wedge d y^{i_{k}}\right)=\sum_{I}^{\prime}\left(\omega_{I} \circ F\right) d\left(y^{i_{1}} \circ F\right) \wedge \ldots \wedge d\left(y^{i_{k}} \circ F\right)
$$

(c) Let $\left(U,\left(x^{i}\right)\right)$ and $\left(\tilde{U},\left(\tilde{x}^{j}\right)\right)$ be overlapping smooth coordinate charts on the smooth n-manifold M. Prove that on $U \cap \tilde{U}$ we have

$$
d \tilde{x}^{1} \wedge \ldots \wedge d \tilde{x}^{n}=\operatorname{det}\left(\frac{\partial \tilde{x}^{j}}{\partial x^{i}}\right) d x^{1} \wedge \ldots \wedge d x^{n}
$$

Problem 4 [6 points]

We consider the manifold \mathbb{R}^{n}. Recall that for a k-form ω on \mathbb{R}^{n} we define the exterior derivative $d \omega$ as the $(k+1)$-form

$$
d\left(\sum_{J}^{\prime} \omega_{J} d x^{J}\right)=\sum_{J}^{\prime} d \omega_{J} \wedge d x^{J}
$$

where $d \omega_{J}$ is the differential of $\omega_{J}: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Prove that d has the following properties:
(a) d is \mathbb{R}-linear.
(b) For a smooth k-form ω and a smooth ℓ-form η we have

$$
d(\omega \wedge \eta)=d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta
$$

(c) $d \circ d=0$.
(d) Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a smooth map and ω a smooth k-form on \mathbb{R}^{m}, then

$$
F^{*}(d \omega)=d\left(F^{*} \omega\right)
$$

Problem 5 [3 points]

On \mathbb{R}^{3}, consider the 2 -form

$$
\Omega=x d y \wedge d z+y d z \wedge d x+z d x \wedge d y
$$

(a) Compute Ω in spherical coordinates (ρ, φ, θ) defined by

$$
(x, y, z)=(\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \theta) .
$$

(b) Compute $d \Omega$ in both Cartesian and spherical coordinates and verify that both expressions represent the same 3 -form.

Problem 6 [1.5 points]

Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, F(u, v)=\left(u^{2}, v^{3}, e^{u}-v\right)$ and let ω be the 2-form $\omega=x d x \wedge d y+z d x \wedge d z$ on \mathbb{R}^{3}. Compute the pullback $F^{*} \omega$.

