Code examples in git folder

1. Basics of Financial Math
1.1 Time Value of Money
Y = annual inferest rate
FV = fiture value , PV = present value
after n years: FV = PV(1+r)ⁿ
PV = FV(1+r)^m
if interest is compounded in times por year : FV = PV. (1+
$$\frac{1}{m}$$
)^{num}
terminology: · BEY (bond-equivalent yield)
annualized yield, compounded semi-annually
· MEY (montgage-equivalent yield)
annualized yield, compounded monthly
e ffective annual interest rate: (1+ refe)ⁿ = (1+ $\frac{1}{m}$)^{num}
=> reff = (1+ $\frac{1}{m}$)ⁿ⁻¹
(> allows to compare instruments with different compounding standards
Example: T=10%, companded tria a year

$$r_{ell} = (1 + \frac{0.1}{2})^2 - 1 = 0.1025 = 10.25\%$$

$$Is \operatorname{rest} \operatorname{almays} \operatorname{bigger} \operatorname{than} \operatorname{r}^{?} (r > 0)$$

$$\operatorname{rest} = (1 + \frac{r}{m})^{m} - 1 = 1 + m \frac{r}{m} + \operatorname{rest} - 1 > r \quad \text{Yes}$$

$$> 0 \quad (\frac{r}{m} > -1 = \operatorname{also} \operatorname{true} \operatorname{uith})$$

$$\operatorname{Bernollis's jnequality})$$

$$\operatorname{continuous compounding} \operatorname{take} \operatorname{lim}_{m \to \infty}$$

$$\operatorname{FV} = \operatorname{PV} \operatorname{lim} (1 + \frac{r}{m})^{m \cdot n} = \operatorname{PV} \cdot \operatorname{e}^{r \cdot n}$$

1.2 General Cash Flows
N years, r is the yearly intenst rate
at endod year there is cash flows
$$C_{11}C_{21...1}C_{M}$$

 $PV = \frac{C_{1}}{(1+r)} + \frac{C_{2}}{(1+r)^{2}} + ... + \frac{C_{M}}{(1+r)^{M}} = \sum_{i=1}^{N} \frac{C_{i}}{(1+r)^{i}}$
with $x = \frac{1}{1+r} = 2$ have to evaluate polynomials $\sum_{i=1}^{N} C_{i}x^{i}$
lunglementation in pyllion:
• best: use vectorized operations
 $i = arange(1, N+1)$, $C = given array$
 $vse dod product for vectors: $PV = dot(C_{1} \times **i)$
 $Vector vector$$

Aunvity:
$$C_i = C$$
 $\forall i$
ordinary annity (vsually assured): pays C at end of the year
 $FV = \sum_{i=0}^{N-i} C(1+r)^{i}$
geometric series: $\times \sum_{i=0}^{N} \times^{i} = \sum_{i=1}^{N+i} \times^{i} = \times^{N+i} - 1 + \sum_{i=0}^{N} \times^{i}$
 $(X-1)\sum_{i=0}^{\infty} \times^{i} = \times^{N+i} - 1 = 7 \sum_{i=0}^{\infty} \times^{i} = \frac{1-\chi^{n+i}}{1-\chi}$
 $= YV = C\left(\frac{(1+r)^{N}-1}{r}\right)$