Calculus and Linear Algebra II

Homework 2

Due on March 9, 2020

Problem 1 [4 points]

Suppose we are given two functions $f(x)$ and $g(x)$, and we would like to evaluate the limit $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ for some $a \in \mathbb{R}$. Then we have that

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)},
$$

provided that numerator and denominator are not both equal to zero or infinity. If they are, one can use L'Hôpital's rule. If you do not know this rule, take a look at the Riley, Hobson, Bence book Mathematical Methods for Physics and Engineering in Chapter 4.7 (or any other suitable book). Using this rule, determine the limits

$$
\lim _{x \rightarrow \infty} \frac{\ln (x)}{x^{a}} \text { and } \lim _{x \rightarrow \infty} \frac{e^{x}}{x^{a}},
$$

for any $a>0$. (Note: Keep the result of this exercise in mind: e^{x} grows faster than any polynomial, and $\ln (x)$ grows slower than any polynomial.)

Problem 2 [7 points]

In most applications, using a Taylor series "usually works", meaning that a few terms in the expansion give you a good approximation to the function, and the rest term is small enough. Here, we would like to look at a counter example to this. We consider the function

$$
f(x)=\left\{\begin{array}{cc}
e^{-\frac{1}{x^{2}}} & , \text { for } x \neq 0 \\
0 & , \text { for } x=0
\end{array}\right.
$$

(a) Visualize the function by drawing its graph. (Note: For such an exercise it is important to draw the qualitative features correctly, e.g., behavior at 0 and for large x, and possible maxima/minima.)
(b) Show that the function is continuous at 0 .
(c) Compute the derivative $f^{\prime}(x)$, and evaluate it at $x=0$. Infer what the values of the higher derivatives $f^{(k)}(0)$ are.
(d) Based on your computations, what is the Talyor series of f around 0? Does the Taylor series of f around 0 converge to f ?

Problem 3 [6 points]

Compute the Taylor series of $f(x)=\ln (1+x)$ around $x=0$, for $-1<x<1$. Show that the rest term indeed converges to 0 . Does the Taylor series also converge for $x=1$? Does is converge for $x=-1$?

Problem 4 [2 points]

Consider the function $f(x, y)=e^{-x} y^{3}$, and the point $\vec{a}=(1,1)$. At \vec{a}, in which direction does f increase the most? (If you like, visualize the function, e.g., with geogebra.org/3d, and check that your answer makes sense.)

Problem 5 [4 points]

Differentials are useful for approximating small changes in a function. Consider this example (taken from Folland's book). The volume of a right circular cone is given by $V(r, h)=\frac{1}{3} \pi r^{2} h$, where r is the base radius and h the height. Consider explicitly $r=3$ and $h=5$.
(a) About how much does the volume increase if the height is increased to 5.02 and the radius to 3.01 ?
(b) If the height is increased to 5.02 , by about how much should the radius be decreased to keep the volume constant?

Bonus Problem [7 points]

We consider the function

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x y^{2}}{x^{2}+y^{2}} & \text { for }(x, y) \neq(0,0) \\
0 & \text { for }(x, y)=(0,0)
\end{array}\right.
$$

(a) Convince yourself that f is continuous at $(0,0)$. (Choose a sequence $\left(x_{n}, y_{n}\right)$ that converges to $(0,0)$ and show that $f\left(x_{n}, y_{n}\right)$ converges to 0 .)
(b) Compute the partial derivatives for $(x, y) \neq(0,0)$. Then, using the definition of partial derivatives, compute $\left(\partial_{x} f\right)(0,0)$ and $\left(\partial_{y} f\right)(0,0)$.
(c) Show that f is not differentiable at $(0,0)$ according to the definition of differentiability from class.

