Calculus and Linear Algebra II

Homework 3

Due on March 30, 2020

Problem 1 [6 points]

In class, we discussed the Leibniz rule for computing the derivative of $\int_{a}^{b} f(x, t) \mathrm{d} t$. Generalize this rule to the case when the boundaries also depend on x, i.e., find the corresponding rule to compute the derivative of

$$
I(x)=\int_{u(x)}^{v(x)} f(x, t) \mathrm{d} t
$$

Apply the new rule to compute the derivative of

$$
G(x)=\int_{x}^{x^{2}} \frac{\sin (x t)}{t} \mathrm{~d} t
$$

Problem 2 [6 points]

Use the method of Lagrange multipliers to find the smallest distance of the curve defined by $x^{2}-2 \sqrt{3} x y-y^{2}-2=0$ to the origin (0,0). Visualize the situation. Hint: The distance is given by $\sqrt{x^{2}+y^{2}}$. But we could as well minimize the function $f(x, y)=x^{2}+y^{2}$ (under the constraint above), which makes the computation a bit easier.

Problem 3 [6 points]

Consider a curve in \mathbb{R}^{n}, which we represent by the continuously differentiable function $\vec{g}(t):[a, b] \rightarrow \mathbb{R}^{n}$ with derivative $\vec{g}^{\prime} \neq 0$. Then

$$
\mathrm{d} \vec{g}(t)=\vec{g}^{\prime}(t) \mathrm{d} t .
$$

Thus, the length of an infinitesimal curve segment is given by

$$
|\mathrm{d} \vec{g}(t)|=\left|\vec{g}^{\prime}(t)\right| \mathrm{d} t=\sqrt{\left(\frac{\mathrm{d} g_{1}}{\mathrm{~d} t}\right)^{2}+\ldots+\left(\frac{\mathrm{d} g_{n}}{\mathrm{~d} t}\right)^{2}} \mathrm{~d} t
$$

Summing all these up gives us the arc length L of the curve,

$$
L=\int_{a}^{b}\left|\vec{g}^{\prime}(t)\right| \mathrm{d} t
$$

a formula that can also be rigorously proven when g is a C^{1} function. Find the lengths of the following curves:
(a) $\vec{g}(t)=(M \cos (t), M \sin (t), N t), t \in[0,2 \pi]$,
(b) $\vec{g}(t)=\left(\frac{1}{3} t^{3}-t, t^{2}\right), t \in[0,2]$.

But notice that we could as well reparametrize the curve. For any continuously differentiable bijective function $\varphi:[c, d] \rightarrow[a, b]$, the function $\vec{g}_{\varphi}(u)=\vec{g}(\varphi(u))$ would describe the same curve. Check that our formula indeed gives us the same curve length.

Problem 4 [6 points]

Without doing any computation, argue why there must be a minus sign in the following formula:

$$
\operatorname{div}(\vec{F} \times \vec{G})=\vec{G} \cdot(\operatorname{curl} \vec{F})-\vec{F} \cdot(\operatorname{curl} \vec{G})
$$

Then, prove the formula by direct computation.

Problem 5 [6 points]

In three dimensions, Maxwell's equations for the electric field \vec{E} and the magnetic field \vec{B} in the vacuum read,

$$
\operatorname{div} \vec{E}=0, \operatorname{div} \vec{B}=0, \operatorname{curl} \vec{E}=-\frac{1}{c} \frac{\partial \vec{B}}{\partial t}, \operatorname{curl} \vec{B}=\frac{1}{c} \frac{\partial \vec{E}}{\partial t}
$$

with some constant $c>0$.
(a) Show that all component of \vec{E} and \vec{B} satisfy the wave equation

$$
\nabla^{2} f=\frac{1}{c^{2}} \frac{\partial^{2} f}{\partial t^{2}}
$$

(b) When f is independent of time, the right-hand side of the wave equation vanishes. Show that $\nabla^{2} \frac{1}{|\vec{x}|}=0$ for $\vec{x} \neq 0$.

