Jacobs University Spring 2020

Calculus and Linear Algebra II

Homework 4

Due on April 20, 2020

Problem 1 [8 points]

Find the solution to the logistic growth model

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \lambda y \left(1 - \frac{y}{k} \right)$$

by separation of variables, where $\lambda, k > 0$ are some parameters.

Problem 2 [4 points]

The point of this exercise is to give an example of an ODE where a solution exists but it is not unique. Show that this is the case for the ODE

$$\frac{\mathrm{d}y}{\mathrm{d}x} = y^{1/3},$$

for initial condition y(0) = 0. Specifically, show that there exist at least two solutions that satisfy the initial condition. Can you even give a whole family of solutions $y_{\lambda}(x)$, with each solution different for different $\lambda \in \mathbb{R}$?

Problem 3 [6 points]

We consider the ODE

$$\frac{\mathrm{d}y}{\mathrm{d}x} = y^2 + \lambda y + 1,$$

for some parameter $\lambda \in \mathbb{R}$. Without solving the ODE explicitly discuss the qualitative behavior of the solutions for different values of the parameter λ and for different initial conditions. (I.e., what are the equilibrium positions, are they stable or not, how do the solutions behave for large x?)

Problem 4 [4 points]: The Curse of Dimension

Let us consider the standard basis $\vec{e}_1, \ldots, \vec{e}_n$ of \mathbb{R}^n .

- (a) Compute the unit vector (= vector with length one) in the direction of the diagonal $\{\lambda(1,\ldots,1):\lambda\in\mathbb{R}\}.$
- (b) Show that this unit vector is, in the limit $n \to \infty$, orthogonal to any basis vector \vec{e}_j , $j = 1, \ldots, n$.

Note: So with finite precision, they are actually orthogonal to each other for very large n, which contradicts our intuition from \mathbb{R}^2 or \mathbb{R}^3 . This creates lots of problems for data mining, e.g., when performing a so-called Principal Component Analysis.

Problem 5 [8 points]: A least norm problem: Least-squares solutions of linear equations

- (a) Generalize the method of Lagrange multipliers to the case where m constraints $G_j(\vec{x}) = 0, \ j = 1, \dots, m$ are present.
- (b) Let us consider the following example of a so-called convex optimization problem (which are very relevant for machine learning). We aim at minimizing the function $f(\vec{x}) = |\vec{x}|^2 = \sum_{i=1}^n x_i^2$, subject to the constraint $\vec{G}(\vec{x}) = A\vec{x} - \vec{b} = \vec{0}$, where $\vec{x} \in \mathbb{R}^n$, $\vec{b} \in \mathbb{R}^m$, $\vec{G}(\vec{x}) \in \mathbb{R}^m$, and A a real $m \times n$ matrix with rankA = m < n. For example, A could come from some data set, and we want to find the solution to the system of linear equations with the smallest norm $|\vec{x}|^2$. Note that the matrix A has rank m < n, so it is not invertible. Hence, we cannot simply insert the constraint into f and compute the minimum. But luckily we know about Lagrange multipliers. So find the minimum of f under the m constraints $\vec{G}(\vec{x}) = \vec{0}$. Hint: The matrix AA^T is invertible (why?), where A^T is the transpose matrix with entries $(A^T)_{ij} = A_{ji}$, i.e., where rows and columns are interchanged.

Bonus Problem [8 points]

The equation of motion of a particle with charge q > 0 and mass m > 0 in an electric field \vec{E} and a magnetic field \vec{B} is

$$m\frac{\mathrm{d}^2\vec{x}(t)}{\mathrm{d}t^2} = q\left(\left(\vec{x}'(t)\times\vec{B}\right) + \vec{E}\right),\,$$

where $\vec{x}(t) \in \mathbb{R}^3$ is the trajectory, and $\vec{x}'(t)$ the velocity of the particle. (This is the Lorentz force law.) Let us now consider the particular electric field

$$\vec{E} = (0, 0, E_3), \text{ with } E_3 > 0,$$

and magnetic field

$$\vec{B} = (B_1, 0, 0), \text{ with } B_1 > 0$$

Find the solution to the equation of motion for initial data

$$\vec{x}(0) = \vec{0}, \ \vec{x}'(0) = (0, v_0, 0), \ \text{with } v_0 \ge 0.$$

Then, discuss the qualitative behavior of the solution depending on the parameter

$$\lambda = \frac{v_0}{E_3/B_1}.$$