Calculus and Linear Algebra II

Homework 4

Due on April 20, 2020

Problem 1 [8 points]

Find the solution to the logistic growth model

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\lambda y\left(1-\frac{y}{k}\right)
$$

by separation of variables, where $\lambda, k>0$ are some parameters.

Problem 2 [4 points]

The point of this exercise is to give an example of an ODE where a solution exists but it is not unique. Show that this is the case for the ODE

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=y^{1 / 3}
$$

for initial condition $y(0)=0$. Specifically, show that there exist at least two solutions that satisfy the initial condition. Can you even give a whole family of solutions $y_{\lambda}(x)$, with each solution different for different $\lambda \in \mathbb{R}$?

Problem 3 [6 points]

We consider the ODE

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=y^{2}+\lambda y+1
$$

for some parameter $\lambda \in \mathbb{R}$. Without solving the ODE explicitly discuss the qualitative behavior of the solutions for different values of the parameter λ and for different initial conditions. (I.e., what are the equilibrium positions, are they stable or not, how do the solutions behave for large x ?)

Problem 4 [4 points]: The Curse of Dimension

Let us consider the standard basis $\vec{e}_{1}, \ldots, \vec{e}_{n}$ of \mathbb{R}^{n}.
(a) Compute the unit vector (= vector with length one) in the direction of the diagonal $\{\lambda(1, \ldots, 1): \lambda \in \mathbb{R}\}$.
(b) Show that this unit vector is, in the limit $n \rightarrow \infty$, orthogonal to any basis vector \vec{e}_{j}, $j=1, \ldots, n$.
Note: So with finite precision, they are actually orthogonal to each other for very large n, which contradicts our intuition from \mathbb{R}^{2} or \mathbb{R}^{3}. This creates lots of problems for data mining, e.g., when performing a so-called Principal Component Analysis.

Problem 5 [8 points]: A least norm problem: Least-squares solutions of linear equations

(a) Generalize the method of Lagrange multipliers to the case where m constraints $G_{j}(\vec{x})=0, j=1, \ldots, m$ are present.
(b) Let us consider the following example of a so-called convex optimization problem (which are very relevant for machine learning). We aim at minimizing the function $f(\vec{x})=|\vec{x}|^{2}=\sum_{i=1}^{n} x_{i}^{2}$, subject to the constraint $\vec{G}(\vec{x})=A \vec{x}-\vec{b}=\overrightarrow{0}$, where $\vec{x} \in \mathbb{R}^{n}$, $\vec{b} \in \mathbb{R}^{m}, \vec{G}(\vec{x}) \in \mathbb{R}^{m}$, and A a real $m \times n$ matrix with $\operatorname{rank} A=m<n$. For example, A could come from some data set, and we want to find the solution to the system of linear equations with the smallest norm $|\vec{x}|^{2}$. Note that the matrix A has rank $m<n$, so it is not invertible. Hence, we cannot simply insert the constraint into f and compute the minimum. But luckily we know about Lagrange multipliers. So find the minimum of f under the m constraints $\vec{G}(\vec{x})=\overrightarrow{0}$. Hint: The matrix $A A^{T}$ is invertible (why?), where A^{T} is the transpose matrix with entries $\left(A^{T}\right)_{i j}=A_{j i}$, i.e., where rows and columns are interchanged.

Bonus Problem [8 points]

The equation of motion of a particle with charge $q>0$ and mass $m>0$ in an electric field \vec{E} and a magnetic field \vec{B} is

$$
m \frac{\mathrm{~d}^{2} \vec{x}(t)}{\mathrm{d} t^{2}}=q\left(\left(\vec{x}^{\prime}(t) \times \vec{B}\right)+\vec{E}\right)
$$

where $\vec{x}(t) \in \mathbb{R}^{3}$ is the trajectory, and $\vec{x}^{\prime}(t)$ the velocity of the particle. (This is the Lorentz force law.) Let us now consider the particular electric field

$$
\vec{E}=\left(0,0, E_{3}\right), \text { with } E_{3}>0,
$$

and magnetic field

$$
\vec{B}=\left(B_{1}, 0,0\right), \text { with } B_{1}>0
$$

Find the solution to the equation of motion for initial data

$$
\vec{x}(0)=\overrightarrow{0}, \quad \vec{x}^{\prime}(0)=\left(0, v_{0}, 0\right), \quad \text { with } v_{0} \geq 0 .
$$

Then, discuss the qualitative behavior of the solution depending on the parameter

$$
\lambda=\frac{v_{0}}{E_{3} / B_{1}} .
$$

