
Jacobs University April 20, 2020

Spring 2020

Calculus and Linear Algebra II

Homework 5

Due on May 4, 2020

Problem 1 [3 points]

Consider the linear system of equations

3x1 + 2x2 + 5x3 = 8,

x1 + 2x2 + 2x3 = 5,

2x1 + 2x2 + 3x3 = 7.

Use Cramer’s rule to determine the solution x3. (Just use Sarrus’ rule to quickly compute
the necessary determinants.)

Problem 2 [4 points]

Consider two vectors in R3,

~x =

 x1
x2
x3

 and ~y =

 y1
y2
y3

 .

In the standard basis

~e1 =

 1
0
0

 , ~e2 =

 0
1
0

 , ~e3 =

 0
0
1

 ,

we can write the vectors as ~x = x1~e1 + x2~e2 + x3~e3 and ~y = y1~e1 + y2~e2 + y3~e3. Now
compute the determinant of the matrix ~e1 ~e2 ~e3

x1 x2 x3
y1 y2 y3

 .

(Note that our notation is a bit symbolic here, since we have put vectors ~e1, ~e2, ~e3 as
matrix entries; but that should not bother us.) The result should be familiar to you.
Where have you encountered the resulting expression before?
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Problem 3 [6 points]

Recall the definition of the classical adjoint Adj(A) of an n× n matrix A from class. We
assume that A is an invertible matrix.

(a) Compute the determinant of Adj(A) in terms of the determinant of A.

(b) Show that the adjoint of the adjoint of A is guaranteed to equal A if n = 2, but not
necessarily for n > 2.

Problem 4 [11 points]

In class, we discussed several properties of eigenvalues. Let us exemplify them for the
general 2× 2 matrix

A =

(
a b
c d

)
,

where a, b, c, d ∈ R.

(a) Compute all the eigenvalues of A. Depending on a, b, c, d, how many real and complex
eigenvalues are there?

(b) Find conditions on a, b, c, d such that A is invertible, and give an explicit formula for
the inverse.

(c) Compute the sum of the eigenvalues. Is it indeed equal to a+ d, i.e., the sum of the
diagonal entries?

(d) Compute the product of the eigenvalues. Is it indeed equal to det(A)?

(e) Now, plug the matrix A (instead of the number λ) into the characteristic polynomial,
and verify that the Cayley-Hamilton theorem holds, i.e., that this gives zero.

Problem 5 [6 points]

Let us consider coordinate transformations in this exercises, which are indispensable for
many-dimensional integration.

(a) First, let us consider two dimensions and the transformation from coordinates x, y to
polar coordinates r, ϕ, where ϕ ∈ [0, 2π), r > 0. The transformation is

x(r, ϕ) = r cos(ϕ)

y(r, ϕ) = r sin(ϕ).

Compute the Jacobian matrix of the function ~f : [0,∞) × [0, 2π) → R2, ~f(r, ϕ) =
(r cos(ϕ), r sin(ϕ)). Then, compute the determinant of the Jacobian matrix (which
is usually called the Jacobian).
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(b) [Bonus] In three dimensions, one of the most important coordinate transformations
is the one to spherical coordinates. Here,

x(r, ϕ, θ) = r cos(ϕ) sin(θ)

y(r, ϕ, θ) = r sin(ϕ) sin(θ)

z(r, ϕ, θ) = r cos(θ),

where r > 0, ϕ ∈ [0, 2π), and θ ∈ [0, π). Compute also here the Jacobian matrix and
then its determinant.

Why is this exercise so interesting? Recall the chain rule in one dimensional integration.
When one changes coordinates from x to r in an integral

∫ b
a
f(x) dx, then this changes

the volume element from dx to dx(r)
dr

dr. Now, in several dimensions, the question is what

replaces the derivative dx(r)
dr

when we want to generalize the chain rule. The right answer
is that this is the determinant of the Jacobian matrix. This seems to be plausible, since
we already know the interpretation of the determinant as a volume. It tells us locally
how much volumes are stretched when we do a coordinate change. For example, in two-
dimensions integrals of the form∫ b

a

(∫ d

c

f(x, y) dx

)
dy =

∫ b

a

∫ d

c

f(x, y) dx dy,

the volume element dx dy transforms into det(J) dr dϕ, where det(J) is the determinant
of the Jacobian matrix of the coordinate transformation from x, y to r, ϕ.
Here is an example for why this is so powerful. Consider the Gaussian integral∫ ∞

−∞
e−x

2

dx.

The Gaussian e−x
2

does not have a known antiderivative (it can not be expressed in terms
of elementary functions). So there seems to be no hope of computing this (improper)
integral. But we could write its square as(∫ ∞

−∞
e−x

2

dx

)2

=

∫ ∞
−∞

e−x
2

dx

∫ ∞
−∞

e−y
2

dy =

∫ ∞
−∞

∫ ∞
−∞

e−x
2

e−y
2

dx dy

=

∫ ∞
−∞

∫ ∞
−∞

e−(x2+y2) dx dy,

and now do a transformation to polar coordinates, i.e.,∫ ∞
−∞

∫ ∞
−∞

e−(x2+y2) dx dy =

∫ ∞
0

∫ 2π

0

e−(x(r,ϕ)2+y(r,ϕ)2) det(J) dr dϕ,

where this notation means that r is integrated from 0 to ∞, and ϕ from 0 to 2π. This can
now be computed, and thus we know the value of the original improper Gaussian integral.
Can you find the result (bonus problem)?
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