Calculus and Linear Algebra II

Quiz 1

Instructions:

- Do all the work on this quiz paper.
- Show your work, i.e., write down the steps of your solution cleanly and readable.
- Electronic devices and notes are not allowed.

Name: Solutions

Problem 1 [5 points]

(a) Write down the formula for the binomial expansion:

$$
(a+b)^{n}=\sum_{k=0}^{n} \square
$$

Solution:

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}
$$

(b) Explicitly compute $\binom{10}{2}$.

Solution:

$$
\binom{10}{2}:=\frac{10!}{(10-2)!2!}=\frac{10 \cdot 9}{2}=45 .
$$

Problem 1 (extra space)

Problem 2 [10 points]

(a) What is the value of the sum $\sum_{k=0}^{N} x^{k}$?

Solution:

This is the geometric series:

$$
\sum_{k=0}^{N} x^{k}=\frac{1-x^{N+1}}{1-x}
$$

(b) For which x does $\sum_{k=0}^{\infty} x^{k}$ converge? For which x does it diverge?

Solution:

The series converges for $-1<x<1$, and diverges for $|x| \geq 1$.
(c) Apply the ratio test to $\sum_{k=1}^{\infty} \frac{k^{3}}{k!}$ in order to determine whether this series converges or diverges.

Solution:

Ratio test applied to $a_{k}=\frac{k^{3}}{k!}$:

$$
\lim _{k \rightarrow \infty}\left|\frac{a_{k+1}}{a_{k}}\right|=\lim _{k \rightarrow \infty} \frac{(k+1)^{3} k!}{(k+1)!k^{3}}=\lim _{k \rightarrow \infty} \frac{(k+1)^{2}}{k^{3}}=0<1 .
$$

So according to the ratio test, the series converges.
(d) Determine the radius of convergence of $\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$

Solution:

According to the ratio test, using $a_{k}=\frac{1}{k!}$, the radius of convergence is

$$
\rho=\lim _{k \rightarrow \infty}\left|\frac{a_{k}}{a_{k+1}}\right|=\lim _{k \rightarrow \infty} \frac{(k+1)!}{k!}=\lim _{k \rightarrow \infty}(k+1)=\infty .
$$

So the radius of convergence is infinite, meaning the power series converges for all $x \in \mathbb{R}$.

Problem 2 (extra space)

